ARM: get rid of needless #if in signal handling code
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
11a5aa32 12#include <linux/bootmem.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/mm.h>
36d0fd21 15#include <linux/genalloc.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
c7909509 22#include <linux/dma-contiguous.h>
39af22a7 23#include <linux/highmem.h>
c7909509 24#include <linux/memblock.h>
99d1717d 25#include <linux/slab.h>
4ce63fcd 26#include <linux/iommu.h>
e9da6e99 27#include <linux/io.h>
4ce63fcd 28#include <linux/vmalloc.h>
158e8bfe 29#include <linux/sizes.h>
a254129e 30#include <linux/cma.h>
1da177e4 31
23759dc6 32#include <asm/memory.h>
43377453 33#include <asm/highmem.h>
1da177e4 34#include <asm/cacheflush.h>
1da177e4 35#include <asm/tlbflush.h>
99d1717d 36#include <asm/mach/arch.h>
4ce63fcd 37#include <asm/dma-iommu.h>
c7909509
MS
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
37134cd5 41
022ae537
RK
42#include "mm.h"
43
15237e1f
MS
44/*
45 * The DMA API is built upon the notion of "buffer ownership". A buffer
46 * is either exclusively owned by the CPU (and therefore may be accessed
47 * by it) or exclusively owned by the DMA device. These helper functions
48 * represent the transitions between these two ownership states.
49 *
50 * Note, however, that on later ARMs, this notion does not work due to
51 * speculative prefetches. We model our approach on the assumption that
52 * the CPU does do speculative prefetches, which means we clean caches
53 * before transfers and delay cache invalidation until transfer completion.
54 *
15237e1f 55 */
51fde349 56static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 57 size_t, enum dma_data_direction);
51fde349 58static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
59 size_t, enum dma_data_direction);
60
2dc6a016
MS
61/**
62 * arm_dma_map_page - map a portion of a page for streaming DMA
63 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64 * @page: page that buffer resides in
65 * @offset: offset into page for start of buffer
66 * @size: size of buffer to map
67 * @dir: DMA transfer direction
68 *
69 * Ensure that any data held in the cache is appropriately discarded
70 * or written back.
71 *
72 * The device owns this memory once this call has completed. The CPU
73 * can regain ownership by calling dma_unmap_page().
74 */
51fde349 75static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
76 unsigned long offset, size_t size, enum dma_data_direction dir,
77 struct dma_attrs *attrs)
78{
dd37e940 79 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
80 __dma_page_cpu_to_dev(page, offset, size, dir);
81 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
82}
83
dd37e940
RH
84static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85 unsigned long offset, size_t size, enum dma_data_direction dir,
86 struct dma_attrs *attrs)
87{
88 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89}
90
2dc6a016
MS
91/**
92 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94 * @handle: DMA address of buffer
95 * @size: size of buffer (same as passed to dma_map_page)
96 * @dir: DMA transfer direction (same as passed to dma_map_page)
97 *
98 * Unmap a page streaming mode DMA translation. The handle and size
99 * must match what was provided in the previous dma_map_page() call.
100 * All other usages are undefined.
101 *
102 * After this call, reads by the CPU to the buffer are guaranteed to see
103 * whatever the device wrote there.
104 */
51fde349 105static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
106 size_t size, enum dma_data_direction dir,
107 struct dma_attrs *attrs)
108{
dd37e940 109 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
110 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
112}
113
51fde349 114static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
115 dma_addr_t handle, size_t size, enum dma_data_direction dir)
116{
117 unsigned int offset = handle & (PAGE_SIZE - 1);
118 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 119 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
120}
121
51fde349 122static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
123 dma_addr_t handle, size_t size, enum dma_data_direction dir)
124{
125 unsigned int offset = handle & (PAGE_SIZE - 1);
126 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 127 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
128}
129
2dc6a016 130struct dma_map_ops arm_dma_ops = {
f99d6034
MS
131 .alloc = arm_dma_alloc,
132 .free = arm_dma_free,
133 .mmap = arm_dma_mmap,
dc2832e1 134 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
135 .map_page = arm_dma_map_page,
136 .unmap_page = arm_dma_unmap_page,
137 .map_sg = arm_dma_map_sg,
138 .unmap_sg = arm_dma_unmap_sg,
139 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
140 .sync_single_for_device = arm_dma_sync_single_for_device,
141 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
142 .sync_sg_for_device = arm_dma_sync_sg_for_device,
143 .set_dma_mask = arm_dma_set_mask,
144};
145EXPORT_SYMBOL(arm_dma_ops);
146
dd37e940
RH
147static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150 dma_addr_t handle, struct dma_attrs *attrs);
55af8a91
ML
151static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
152 void *cpu_addr, dma_addr_t dma_addr, size_t size,
153 struct dma_attrs *attrs);
dd37e940
RH
154
155struct dma_map_ops arm_coherent_dma_ops = {
156 .alloc = arm_coherent_dma_alloc,
157 .free = arm_coherent_dma_free,
55af8a91 158 .mmap = arm_coherent_dma_mmap,
dd37e940
RH
159 .get_sgtable = arm_dma_get_sgtable,
160 .map_page = arm_coherent_dma_map_page,
161 .map_sg = arm_dma_map_sg,
162 .set_dma_mask = arm_dma_set_mask,
163};
164EXPORT_SYMBOL(arm_coherent_dma_ops);
165
9f28cde0
RK
166static int __dma_supported(struct device *dev, u64 mask, bool warn)
167{
168 unsigned long max_dma_pfn;
169
170 /*
171 * If the mask allows for more memory than we can address,
172 * and we actually have that much memory, then we must
173 * indicate that DMA to this device is not supported.
174 */
175 if (sizeof(mask) != sizeof(dma_addr_t) &&
176 mask > (dma_addr_t)~0 &&
8bf1268f 177 dma_to_pfn(dev, ~0) < max_pfn - 1) {
9f28cde0
RK
178 if (warn) {
179 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
180 mask);
181 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
182 }
183 return 0;
184 }
185
186 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
187
188 /*
189 * Translate the device's DMA mask to a PFN limit. This
190 * PFN number includes the page which we can DMA to.
191 */
192 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
193 if (warn)
194 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
195 mask,
196 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
197 max_dma_pfn + 1);
198 return 0;
199 }
200
201 return 1;
202}
203
ab6494f0
CM
204static u64 get_coherent_dma_mask(struct device *dev)
205{
4dcfa600 206 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
207
208 if (dev) {
209 mask = dev->coherent_dma_mask;
210
211 /*
212 * Sanity check the DMA mask - it must be non-zero, and
213 * must be able to be satisfied by a DMA allocation.
214 */
215 if (mask == 0) {
216 dev_warn(dev, "coherent DMA mask is unset\n");
217 return 0;
218 }
219
9f28cde0 220 if (!__dma_supported(dev, mask, true))
ab6494f0 221 return 0;
ab6494f0 222 }
1da177e4 223
ab6494f0
CM
224 return mask;
225}
226
c7909509
MS
227static void __dma_clear_buffer(struct page *page, size_t size)
228{
c7909509
MS
229 /*
230 * Ensure that the allocated pages are zeroed, and that any data
231 * lurking in the kernel direct-mapped region is invalidated.
232 */
9848e48f
MS
233 if (PageHighMem(page)) {
234 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
235 phys_addr_t end = base + size;
236 while (size > 0) {
237 void *ptr = kmap_atomic(page);
238 memset(ptr, 0, PAGE_SIZE);
239 dmac_flush_range(ptr, ptr + PAGE_SIZE);
240 kunmap_atomic(ptr);
241 page++;
242 size -= PAGE_SIZE;
243 }
244 outer_flush_range(base, end);
245 } else {
246 void *ptr = page_address(page);
4ce63fcd
MS
247 memset(ptr, 0, size);
248 dmac_flush_range(ptr, ptr + size);
249 outer_flush_range(__pa(ptr), __pa(ptr) + size);
250 }
c7909509
MS
251}
252
7a9a32a9
RK
253/*
254 * Allocate a DMA buffer for 'dev' of size 'size' using the
255 * specified gfp mask. Note that 'size' must be page aligned.
256 */
257static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
258{
259 unsigned long order = get_order(size);
260 struct page *page, *p, *e;
7a9a32a9
RK
261
262 page = alloc_pages(gfp, order);
263 if (!page)
264 return NULL;
265
266 /*
267 * Now split the huge page and free the excess pages
268 */
269 split_page(page, order);
270 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
271 __free_page(p);
272
c7909509 273 __dma_clear_buffer(page, size);
7a9a32a9
RK
274
275 return page;
276}
277
278/*
279 * Free a DMA buffer. 'size' must be page aligned.
280 */
281static void __dma_free_buffer(struct page *page, size_t size)
282{
283 struct page *e = page + (size >> PAGE_SHIFT);
284
285 while (page < e) {
286 __free_page(page);
287 page++;
288 }
289}
290
ab6494f0 291#ifdef CONFIG_MMU
a5e9d38b 292
e9da6e99 293static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 294 pgprot_t prot, struct page **ret_page,
6e8266e3 295 const void *caller, bool want_vaddr);
99d1717d 296
e9da6e99
MS
297static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
298 pgprot_t prot, struct page **ret_page,
6e8266e3 299 const void *caller, bool want_vaddr);
99d1717d 300
e9da6e99
MS
301static void *
302__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
303 const void *caller)
99d1717d 304{
e9da6e99
MS
305 /*
306 * DMA allocation can be mapped to user space, so lets
307 * set VM_USERMAP flags too.
308 */
513510dd
LA
309 return dma_common_contiguous_remap(page, size,
310 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
311 prot, caller);
99d1717d 312}
1da177e4 313
e9da6e99 314static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 315{
513510dd
LA
316 dma_common_free_remap(cpu_addr, size,
317 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
88c58f3b 318}
88c58f3b 319
6e5267aa 320#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
36d0fd21 321static struct gen_pool *atomic_pool;
6e5267aa 322
36d0fd21 323static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
c7909509
MS
324
325static int __init early_coherent_pool(char *p)
326{
36d0fd21 327 atomic_pool_size = memparse(p, &p);
c7909509
MS
328 return 0;
329}
330early_param("coherent_pool", early_coherent_pool);
331
6e5267aa
MS
332void __init init_dma_coherent_pool_size(unsigned long size)
333{
334 /*
335 * Catch any attempt to set the pool size too late.
336 */
36d0fd21 337 BUG_ON(atomic_pool);
6e5267aa
MS
338
339 /*
340 * Set architecture specific coherent pool size only if
341 * it has not been changed by kernel command line parameter.
342 */
36d0fd21
LA
343 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
344 atomic_pool_size = size;
6e5267aa
MS
345}
346
c7909509
MS
347/*
348 * Initialise the coherent pool for atomic allocations.
349 */
e9da6e99 350static int __init atomic_pool_init(void)
c7909509 351{
71b55663 352 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 353 gfp_t gfp = GFP_KERNEL | GFP_DMA;
c7909509
MS
354 struct page *page;
355 void *ptr;
c7909509 356
36d0fd21
LA
357 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
358 if (!atomic_pool)
359 goto out;
6b3fe472 360
e464ef16 361 if (dev_get_cma_area(NULL))
36d0fd21 362 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
6e8266e3 363 &page, atomic_pool_init, true);
e9da6e99 364 else
36d0fd21 365 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
6e8266e3 366 &page, atomic_pool_init, true);
c7909509 367 if (ptr) {
36d0fd21
LA
368 int ret;
369
370 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
371 page_to_phys(page),
372 atomic_pool_size, -1);
373 if (ret)
374 goto destroy_genpool;
375
376 gen_pool_set_algo(atomic_pool,
377 gen_pool_first_fit_order_align,
378 (void *)PAGE_SHIFT);
379 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
380 atomic_pool_size / 1024);
c7909509
MS
381 return 0;
382 }
ec10665c 383
36d0fd21
LA
384destroy_genpool:
385 gen_pool_destroy(atomic_pool);
386 atomic_pool = NULL;
387out:
388 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
389 atomic_pool_size / 1024);
c7909509
MS
390 return -ENOMEM;
391}
392/*
393 * CMA is activated by core_initcall, so we must be called after it.
394 */
e9da6e99 395postcore_initcall(atomic_pool_init);
c7909509
MS
396
397struct dma_contig_early_reserve {
398 phys_addr_t base;
399 unsigned long size;
400};
401
402static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
403
404static int dma_mmu_remap_num __initdata;
405
406void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
407{
408 dma_mmu_remap[dma_mmu_remap_num].base = base;
409 dma_mmu_remap[dma_mmu_remap_num].size = size;
410 dma_mmu_remap_num++;
411}
412
413void __init dma_contiguous_remap(void)
414{
415 int i;
416 for (i = 0; i < dma_mmu_remap_num; i++) {
417 phys_addr_t start = dma_mmu_remap[i].base;
418 phys_addr_t end = start + dma_mmu_remap[i].size;
419 struct map_desc map;
420 unsigned long addr;
421
422 if (end > arm_lowmem_limit)
423 end = arm_lowmem_limit;
424 if (start >= end)
39f78e70 425 continue;
c7909509
MS
426
427 map.pfn = __phys_to_pfn(start);
428 map.virtual = __phys_to_virt(start);
429 map.length = end - start;
430 map.type = MT_MEMORY_DMA_READY;
431
432 /*
6b076991
RK
433 * Clear previous low-memory mapping to ensure that the
434 * TLB does not see any conflicting entries, then flush
435 * the TLB of the old entries before creating new mappings.
436 *
437 * This ensures that any speculatively loaded TLB entries
438 * (even though they may be rare) can not cause any problems,
439 * and ensures that this code is architecturally compliant.
c7909509
MS
440 */
441 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 442 addr += PMD_SIZE)
c7909509
MS
443 pmd_clear(pmd_off_k(addr));
444
6b076991
RK
445 flush_tlb_kernel_range(__phys_to_virt(start),
446 __phys_to_virt(end));
447
c7909509
MS
448 iotable_init(&map, 1);
449 }
450}
451
c7909509
MS
452static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
453 void *data)
454{
455 struct page *page = virt_to_page(addr);
456 pgprot_t prot = *(pgprot_t *)data;
457
458 set_pte_ext(pte, mk_pte(page, prot), 0);
459 return 0;
460}
461
462static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
463{
464 unsigned long start = (unsigned long) page_address(page);
465 unsigned end = start + size;
466
467 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
468 flush_tlb_kernel_range(start, end);
469}
470
471static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
472 pgprot_t prot, struct page **ret_page,
6e8266e3 473 const void *caller, bool want_vaddr)
c7909509
MS
474{
475 struct page *page;
6e8266e3 476 void *ptr = NULL;
c7909509
MS
477 page = __dma_alloc_buffer(dev, size, gfp);
478 if (!page)
479 return NULL;
6e8266e3
CC
480 if (!want_vaddr)
481 goto out;
c7909509
MS
482
483 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
484 if (!ptr) {
485 __dma_free_buffer(page, size);
486 return NULL;
487 }
488
6e8266e3 489 out:
c7909509
MS
490 *ret_page = page;
491 return ptr;
492}
493
e9da6e99 494static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 495{
36d0fd21 496 unsigned long val;
e9da6e99 497 void *ptr = NULL;
c7909509 498
36d0fd21 499 if (!atomic_pool) {
e9da6e99 500 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
501 return NULL;
502 }
503
36d0fd21
LA
504 val = gen_pool_alloc(atomic_pool, size);
505 if (val) {
506 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
507
508 *ret_page = phys_to_page(phys);
509 ptr = (void *)val;
c7909509 510 }
e9da6e99
MS
511
512 return ptr;
c7909509
MS
513}
514
21d0a759
HD
515static bool __in_atomic_pool(void *start, size_t size)
516{
36d0fd21 517 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
21d0a759
HD
518}
519
e9da6e99 520static int __free_from_pool(void *start, size_t size)
c7909509 521{
21d0a759 522 if (!__in_atomic_pool(start, size))
c7909509
MS
523 return 0;
524
36d0fd21 525 gen_pool_free(atomic_pool, (unsigned long)start, size);
e9da6e99 526
c7909509
MS
527 return 1;
528}
529
530static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 531 pgprot_t prot, struct page **ret_page,
6e8266e3 532 const void *caller, bool want_vaddr)
c7909509
MS
533{
534 unsigned long order = get_order(size);
535 size_t count = size >> PAGE_SHIFT;
536 struct page *page;
6e8266e3 537 void *ptr = NULL;
c7909509
MS
538
539 page = dma_alloc_from_contiguous(dev, count, order);
540 if (!page)
541 return NULL;
542
543 __dma_clear_buffer(page, size);
c7909509 544
6e8266e3
CC
545 if (!want_vaddr)
546 goto out;
547
9848e48f
MS
548 if (PageHighMem(page)) {
549 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
550 if (!ptr) {
551 dma_release_from_contiguous(dev, page, count);
552 return NULL;
553 }
554 } else {
555 __dma_remap(page, size, prot);
556 ptr = page_address(page);
557 }
6e8266e3
CC
558
559 out:
c7909509 560 *ret_page = page;
9848e48f 561 return ptr;
c7909509
MS
562}
563
564static void __free_from_contiguous(struct device *dev, struct page *page,
6e8266e3 565 void *cpu_addr, size_t size, bool want_vaddr)
c7909509 566{
6e8266e3
CC
567 if (want_vaddr) {
568 if (PageHighMem(page))
569 __dma_free_remap(cpu_addr, size);
570 else
571 __dma_remap(page, size, PAGE_KERNEL);
572 }
c7909509
MS
573 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
574}
575
f99d6034
MS
576static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
577{
578 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
579 pgprot_writecombine(prot) :
580 pgprot_dmacoherent(prot);
581 return prot;
582}
583
c7909509
MS
584#define nommu() 0
585
ab6494f0 586#else /* !CONFIG_MMU */
695ae0af 587
c7909509
MS
588#define nommu() 1
589
6e8266e3
CC
590#define __get_dma_pgprot(attrs, prot) __pgprot(0)
591#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
e9da6e99 592#define __alloc_from_pool(size, ret_page) NULL
6e8266e3 593#define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
c7909509 594#define __free_from_pool(cpu_addr, size) 0
6e8266e3 595#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
c7909509 596#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
597
598#endif /* CONFIG_MMU */
599
c7909509
MS
600static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
601 struct page **ret_page)
ab6494f0 602{
c7909509
MS
603 struct page *page;
604 page = __dma_alloc_buffer(dev, size, gfp);
605 if (!page)
606 return NULL;
607
608 *ret_page = page;
609 return page_address(page);
610}
611
612
613
614static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
6e8266e3
CC
615 gfp_t gfp, pgprot_t prot, bool is_coherent,
616 struct dma_attrs *attrs, const void *caller)
c7909509
MS
617{
618 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 619 struct page *page = NULL;
31ebf944 620 void *addr;
6e8266e3 621 bool want_vaddr;
ab6494f0 622
c7909509
MS
623#ifdef CONFIG_DMA_API_DEBUG
624 u64 limit = (mask + 1) & ~mask;
625 if (limit && size >= limit) {
626 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
627 size, mask);
628 return NULL;
629 }
630#endif
631
632 if (!mask)
633 return NULL;
634
635 if (mask < 0xffffffffULL)
636 gfp |= GFP_DMA;
637
ea2e7057
SB
638 /*
639 * Following is a work-around (a.k.a. hack) to prevent pages
640 * with __GFP_COMP being passed to split_page() which cannot
641 * handle them. The real problem is that this flag probably
642 * should be 0 on ARM as it is not supported on this
643 * platform; see CONFIG_HUGETLBFS.
644 */
645 gfp &= ~(__GFP_COMP);
646
553ac788 647 *handle = DMA_ERROR_CODE;
04da5694 648 size = PAGE_ALIGN(size);
6e8266e3 649 want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
ab6494f0 650
dd37e940 651 if (is_coherent || nommu())
c7909509 652 addr = __alloc_simple_buffer(dev, size, gfp, &page);
633dc92a 653 else if (!(gfp & __GFP_WAIT))
e9da6e99 654 addr = __alloc_from_pool(size, &page);
e464ef16 655 else if (!dev_get_cma_area(dev))
6e8266e3 656 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller, want_vaddr);
31ebf944 657 else
6e8266e3 658 addr = __alloc_from_contiguous(dev, size, prot, &page, caller, want_vaddr);
695ae0af 659
6e8266e3 660 if (page)
9eedd963 661 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 662
6e8266e3 663 return want_vaddr ? addr : page;
31ebf944 664}
1da177e4
LT
665
666/*
667 * Allocate DMA-coherent memory space and return both the kernel remapped
668 * virtual and bus address for that space.
669 */
f99d6034
MS
670void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
671 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 672{
0ea1ec71 673 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268
DB
674 void *memory;
675
676 if (dma_alloc_from_coherent(dev, size, handle, &memory))
677 return memory;
678
dd37e940 679 return __dma_alloc(dev, size, handle, gfp, prot, false,
6e8266e3 680 attrs, __builtin_return_address(0));
dd37e940
RH
681}
682
683static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
684 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
685{
0ea1ec71 686 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
dd37e940
RH
687 void *memory;
688
689 if (dma_alloc_from_coherent(dev, size, handle, &memory))
690 return memory;
691
692 return __dma_alloc(dev, size, handle, gfp, prot, true,
6e8266e3 693 attrs, __builtin_return_address(0));
1da177e4 694}
1da177e4 695
55af8a91 696static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
f99d6034
MS
697 void *cpu_addr, dma_addr_t dma_addr, size_t size,
698 struct dma_attrs *attrs)
1da177e4 699{
ab6494f0
CM
700 int ret = -ENXIO;
701#ifdef CONFIG_MMU
50262a4b
MS
702 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
703 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 704 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
705 unsigned long off = vma->vm_pgoff;
706
47142f07
MS
707 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
708 return ret;
709
50262a4b
MS
710 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
711 ret = remap_pfn_range(vma, vma->vm_start,
712 pfn + off,
713 vma->vm_end - vma->vm_start,
714 vma->vm_page_prot);
715 }
ab6494f0 716#endif /* CONFIG_MMU */
1da177e4
LT
717
718 return ret;
719}
720
55af8a91
ML
721/*
722 * Create userspace mapping for the DMA-coherent memory.
723 */
724static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
725 void *cpu_addr, dma_addr_t dma_addr, size_t size,
726 struct dma_attrs *attrs)
727{
728 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
729}
730
731int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
732 void *cpu_addr, dma_addr_t dma_addr, size_t size,
733 struct dma_attrs *attrs)
734{
735#ifdef CONFIG_MMU
736 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
737#endif /* CONFIG_MMU */
738 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
739}
740
1da177e4 741/*
c7909509 742 * Free a buffer as defined by the above mapping.
1da177e4 743 */
dd37e940
RH
744static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
745 dma_addr_t handle, struct dma_attrs *attrs,
746 bool is_coherent)
1da177e4 747{
c7909509 748 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
6e8266e3 749 bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
5edf71ae 750
1fe53268
DB
751 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
752 return;
753
3e82d012
RK
754 size = PAGE_ALIGN(size);
755
dd37e940 756 if (is_coherent || nommu()) {
c7909509 757 __dma_free_buffer(page, size);
d9e0d149
AK
758 } else if (__free_from_pool(cpu_addr, size)) {
759 return;
e464ef16 760 } else if (!dev_get_cma_area(dev)) {
6e8266e3
CC
761 if (want_vaddr)
762 __dma_free_remap(cpu_addr, size);
c7909509
MS
763 __dma_free_buffer(page, size);
764 } else {
c7909509
MS
765 /*
766 * Non-atomic allocations cannot be freed with IRQs disabled
767 */
768 WARN_ON(irqs_disabled());
6e8266e3 769 __free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
c7909509 770 }
1da177e4 771}
afd1a321 772
dd37e940
RH
773void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
774 dma_addr_t handle, struct dma_attrs *attrs)
775{
776 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
777}
778
779static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
780 dma_addr_t handle, struct dma_attrs *attrs)
781{
782 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
783}
784
dc2832e1
MS
785int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
786 void *cpu_addr, dma_addr_t handle, size_t size,
787 struct dma_attrs *attrs)
788{
789 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
790 int ret;
791
792 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
793 if (unlikely(ret))
794 return ret;
795
796 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
797 return 0;
798}
799
4ea0d737 800static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
801 size_t size, enum dma_data_direction dir,
802 void (*op)(const void *, size_t, int))
43377453 803{
15653371
RK
804 unsigned long pfn;
805 size_t left = size;
806
807 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
808 offset %= PAGE_SIZE;
809
43377453
NP
810 /*
811 * A single sg entry may refer to multiple physically contiguous
812 * pages. But we still need to process highmem pages individually.
813 * If highmem is not configured then the bulk of this loop gets
814 * optimized out.
815 */
43377453
NP
816 do {
817 size_t len = left;
93f1d629
RK
818 void *vaddr;
819
15653371
RK
820 page = pfn_to_page(pfn);
821
93f1d629 822 if (PageHighMem(page)) {
15653371 823 if (len + offset > PAGE_SIZE)
93f1d629 824 len = PAGE_SIZE - offset;
dd0f67f4
JK
825
826 if (cache_is_vipt_nonaliasing()) {
39af22a7 827 vaddr = kmap_atomic(page);
7e5a69e8 828 op(vaddr + offset, len, dir);
39af22a7 829 kunmap_atomic(vaddr);
dd0f67f4
JK
830 } else {
831 vaddr = kmap_high_get(page);
832 if (vaddr) {
833 op(vaddr + offset, len, dir);
834 kunmap_high(page);
835 }
43377453 836 }
93f1d629
RK
837 } else {
838 vaddr = page_address(page) + offset;
a9c9147e 839 op(vaddr, len, dir);
43377453 840 }
43377453 841 offset = 0;
15653371 842 pfn++;
43377453
NP
843 left -= len;
844 } while (left);
845}
4ea0d737 846
51fde349
MS
847/*
848 * Make an area consistent for devices.
849 * Note: Drivers should NOT use this function directly, as it will break
850 * platforms with CONFIG_DMABOUNCE.
851 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
852 */
853static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
854 size_t size, enum dma_data_direction dir)
855{
2161c248 856 phys_addr_t paddr;
65af191a 857
a9c9147e 858 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
859
860 paddr = page_to_phys(page) + off;
2ffe2da3
RK
861 if (dir == DMA_FROM_DEVICE) {
862 outer_inv_range(paddr, paddr + size);
863 } else {
864 outer_clean_range(paddr, paddr + size);
865 }
866 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 867}
4ea0d737 868
51fde349 869static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
870 size_t size, enum dma_data_direction dir)
871{
2161c248 872 phys_addr_t paddr = page_to_phys(page) + off;
2ffe2da3
RK
873
874 /* FIXME: non-speculating: not required */
deace4a6
RK
875 /* in any case, don't bother invalidating if DMA to device */
876 if (dir != DMA_TO_DEVICE) {
2ffe2da3
RK
877 outer_inv_range(paddr, paddr + size);
878
deace4a6
RK
879 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
880 }
c0177800
CM
881
882 /*
b2a234ed 883 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 884 */
b2a234ed
ML
885 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
886 unsigned long pfn;
887 size_t left = size;
888
889 pfn = page_to_pfn(page) + off / PAGE_SIZE;
890 off %= PAGE_SIZE;
891 if (off) {
892 pfn++;
893 left -= PAGE_SIZE - off;
894 }
895 while (left >= PAGE_SIZE) {
896 page = pfn_to_page(pfn++);
897 set_bit(PG_dcache_clean, &page->flags);
898 left -= PAGE_SIZE;
899 }
900 }
4ea0d737 901}
43377453 902
afd1a321 903/**
2a550e73 904 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
905 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
906 * @sg: list of buffers
907 * @nents: number of buffers to map
908 * @dir: DMA transfer direction
909 *
910 * Map a set of buffers described by scatterlist in streaming mode for DMA.
911 * This is the scatter-gather version of the dma_map_single interface.
912 * Here the scatter gather list elements are each tagged with the
913 * appropriate dma address and length. They are obtained via
914 * sg_dma_{address,length}.
915 *
916 * Device ownership issues as mentioned for dma_map_single are the same
917 * here.
918 */
2dc6a016
MS
919int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
920 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 921{
2a550e73 922 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 923 struct scatterlist *s;
01135d92 924 int i, j;
afd1a321
RK
925
926 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
927#ifdef CONFIG_NEED_SG_DMA_LENGTH
928 s->dma_length = s->length;
929#endif
2a550e73
MS
930 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
931 s->length, dir, attrs);
01135d92
RK
932 if (dma_mapping_error(dev, s->dma_address))
933 goto bad_mapping;
afd1a321 934 }
afd1a321 935 return nents;
01135d92
RK
936
937 bad_mapping:
938 for_each_sg(sg, s, i, j)
2a550e73 939 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 940 return 0;
afd1a321 941}
afd1a321
RK
942
943/**
2a550e73 944 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
945 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
946 * @sg: list of buffers
0adfca6f 947 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
948 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
949 *
950 * Unmap a set of streaming mode DMA translations. Again, CPU access
951 * rules concerning calls here are the same as for dma_unmap_single().
952 */
2dc6a016
MS
953void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
954 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 955{
2a550e73 956 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 957 struct scatterlist *s;
01135d92 958
01135d92 959 int i;
24056f52 960
01135d92 961 for_each_sg(sg, s, nents, i)
2a550e73 962 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 963}
afd1a321
RK
964
965/**
2a550e73 966 * arm_dma_sync_sg_for_cpu
afd1a321
RK
967 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
968 * @sg: list of buffers
969 * @nents: number of buffers to map (returned from dma_map_sg)
970 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
971 */
2dc6a016 972void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
973 int nents, enum dma_data_direction dir)
974{
2a550e73 975 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
976 struct scatterlist *s;
977 int i;
978
2a550e73
MS
979 for_each_sg(sg, s, nents, i)
980 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
981 dir);
afd1a321 982}
afd1a321
RK
983
984/**
2a550e73 985 * arm_dma_sync_sg_for_device
afd1a321
RK
986 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
987 * @sg: list of buffers
988 * @nents: number of buffers to map (returned from dma_map_sg)
989 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
990 */
2dc6a016 991void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
992 int nents, enum dma_data_direction dir)
993{
2a550e73 994 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
995 struct scatterlist *s;
996 int i;
997
2a550e73
MS
998 for_each_sg(sg, s, nents, i)
999 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1000 dir);
afd1a321 1001}
24056f52 1002
022ae537
RK
1003/*
1004 * Return whether the given device DMA address mask can be supported
1005 * properly. For example, if your device can only drive the low 24-bits
1006 * during bus mastering, then you would pass 0x00ffffff as the mask
1007 * to this function.
1008 */
1009int dma_supported(struct device *dev, u64 mask)
1010{
9f28cde0 1011 return __dma_supported(dev, mask, false);
022ae537
RK
1012}
1013EXPORT_SYMBOL(dma_supported);
1014
87b54e78 1015int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
1016{
1017 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1018 return -EIO;
1019
022ae537 1020 *dev->dma_mask = dma_mask;
022ae537
RK
1021
1022 return 0;
1023}
022ae537 1024
24056f52
RK
1025#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1026
1027static int __init dma_debug_do_init(void)
1028{
1029 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1030 return 0;
1031}
1032fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1033
1034#ifdef CONFIG_ARM_DMA_USE_IOMMU
1035
1036/* IOMMU */
1037
4d852ef8
AH
1038static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1039
4ce63fcd
MS
1040static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1041 size_t size)
1042{
1043 unsigned int order = get_order(size);
1044 unsigned int align = 0;
1045 unsigned int count, start;
006f841d 1046 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1047 unsigned long flags;
4d852ef8
AH
1048 dma_addr_t iova;
1049 int i;
4ce63fcd 1050
60460abf
SWK
1051 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1052 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1053
68efd7d2
MS
1054 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1055 align = (1 << order) - 1;
4ce63fcd
MS
1056
1057 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1058 for (i = 0; i < mapping->nr_bitmaps; i++) {
1059 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1060 mapping->bits, 0, count, align);
1061
1062 if (start > mapping->bits)
1063 continue;
1064
1065 bitmap_set(mapping->bitmaps[i], start, count);
1066 break;
4ce63fcd
MS
1067 }
1068
4d852ef8
AH
1069 /*
1070 * No unused range found. Try to extend the existing mapping
1071 * and perform a second attempt to reserve an IO virtual
1072 * address range of size bytes.
1073 */
1074 if (i == mapping->nr_bitmaps) {
1075 if (extend_iommu_mapping(mapping)) {
1076 spin_unlock_irqrestore(&mapping->lock, flags);
1077 return DMA_ERROR_CODE;
1078 }
1079
1080 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1081 mapping->bits, 0, count, align);
1082
1083 if (start > mapping->bits) {
1084 spin_unlock_irqrestore(&mapping->lock, flags);
1085 return DMA_ERROR_CODE;
1086 }
1087
1088 bitmap_set(mapping->bitmaps[i], start, count);
1089 }
4ce63fcd
MS
1090 spin_unlock_irqrestore(&mapping->lock, flags);
1091
006f841d 1092 iova = mapping->base + (mapping_size * i);
68efd7d2 1093 iova += start << PAGE_SHIFT;
4d852ef8
AH
1094
1095 return iova;
4ce63fcd
MS
1096}
1097
1098static inline void __free_iova(struct dma_iommu_mapping *mapping,
1099 dma_addr_t addr, size_t size)
1100{
4d852ef8 1101 unsigned int start, count;
006f841d 1102 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1103 unsigned long flags;
4d852ef8
AH
1104 dma_addr_t bitmap_base;
1105 u32 bitmap_index;
1106
1107 if (!size)
1108 return;
1109
006f841d 1110 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
4d852ef8
AH
1111 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1112
006f841d 1113 bitmap_base = mapping->base + mapping_size * bitmap_index;
4d852ef8 1114
68efd7d2 1115 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8 1116
006f841d 1117 if (addr + size > bitmap_base + mapping_size) {
4d852ef8
AH
1118 /*
1119 * The address range to be freed reaches into the iova
1120 * range of the next bitmap. This should not happen as
1121 * we don't allow this in __alloc_iova (at the
1122 * moment).
1123 */
1124 BUG();
1125 } else
68efd7d2 1126 count = size >> PAGE_SHIFT;
4ce63fcd
MS
1127
1128 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1129 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1130 spin_unlock_irqrestore(&mapping->lock, flags);
1131}
1132
549a17e4
MS
1133static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1134 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1135{
1136 struct page **pages;
1137 int count = size >> PAGE_SHIFT;
1138 int array_size = count * sizeof(struct page *);
1139 int i = 0;
1140
1141 if (array_size <= PAGE_SIZE)
23be7fda 1142 pages = kzalloc(array_size, GFP_KERNEL);
4ce63fcd
MS
1143 else
1144 pages = vzalloc(array_size);
1145 if (!pages)
1146 return NULL;
1147
549a17e4
MS
1148 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1149 {
1150 unsigned long order = get_order(size);
1151 struct page *page;
1152
1153 page = dma_alloc_from_contiguous(dev, count, order);
1154 if (!page)
1155 goto error;
1156
1157 __dma_clear_buffer(page, size);
1158
1159 for (i = 0; i < count; i++)
1160 pages[i] = page + i;
1161
1162 return pages;
1163 }
1164
f8669bef
MS
1165 /*
1166 * IOMMU can map any pages, so himem can also be used here
1167 */
1168 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1169
4ce63fcd 1170 while (count) {
49f28aa6
TF
1171 int j, order;
1172
1173 for (order = __fls(count); order > 0; --order) {
1174 /*
1175 * We do not want OOM killer to be invoked as long
1176 * as we can fall back to single pages, so we force
1177 * __GFP_NORETRY for orders higher than zero.
1178 */
1179 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1180 if (pages[i])
1181 break;
1182 }
4ce63fcd 1183
49f28aa6
TF
1184 if (!pages[i]) {
1185 /*
1186 * Fall back to single page allocation.
1187 * Might invoke OOM killer as last resort.
1188 */
1189 pages[i] = alloc_pages(gfp, 0);
1190 if (!pages[i])
1191 goto error;
1192 }
4ce63fcd 1193
5a796eeb 1194 if (order) {
4ce63fcd 1195 split_page(pages[i], order);
5a796eeb
HD
1196 j = 1 << order;
1197 while (--j)
1198 pages[i + j] = pages[i] + j;
1199 }
4ce63fcd
MS
1200
1201 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1202 i += 1 << order;
1203 count -= 1 << order;
1204 }
1205
1206 return pages;
1207error:
9fa8af91 1208 while (i--)
4ce63fcd
MS
1209 if (pages[i])
1210 __free_pages(pages[i], 0);
46c87852 1211 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1212 kfree(pages);
1213 else
1214 vfree(pages);
1215 return NULL;
1216}
1217
549a17e4
MS
1218static int __iommu_free_buffer(struct device *dev, struct page **pages,
1219 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1220{
1221 int count = size >> PAGE_SHIFT;
1222 int array_size = count * sizeof(struct page *);
1223 int i;
549a17e4
MS
1224
1225 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1226 dma_release_from_contiguous(dev, pages[0], count);
1227 } else {
1228 for (i = 0; i < count; i++)
1229 if (pages[i])
1230 __free_pages(pages[i], 0);
1231 }
1232
46c87852 1233 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1234 kfree(pages);
1235 else
1236 vfree(pages);
1237 return 0;
1238}
1239
1240/*
1241 * Create a CPU mapping for a specified pages
1242 */
1243static void *
e9da6e99
MS
1244__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1245 const void *caller)
4ce63fcd 1246{
513510dd
LA
1247 return dma_common_pages_remap(pages, size,
1248 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
4ce63fcd
MS
1249}
1250
1251/*
1252 * Create a mapping in device IO address space for specified pages
1253 */
1254static dma_addr_t
1255__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1256{
89cfdb19 1257 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1258 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1259 dma_addr_t dma_addr, iova;
1260 int i, ret = DMA_ERROR_CODE;
1261
1262 dma_addr = __alloc_iova(mapping, size);
1263 if (dma_addr == DMA_ERROR_CODE)
1264 return dma_addr;
1265
1266 iova = dma_addr;
1267 for (i = 0; i < count; ) {
1268 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1269 phys_addr_t phys = page_to_phys(pages[i]);
1270 unsigned int len, j;
1271
1272 for (j = i + 1; j < count; j++, next_pfn++)
1273 if (page_to_pfn(pages[j]) != next_pfn)
1274 break;
1275
1276 len = (j - i) << PAGE_SHIFT;
c9b24996
AH
1277 ret = iommu_map(mapping->domain, iova, phys, len,
1278 IOMMU_READ|IOMMU_WRITE);
4ce63fcd
MS
1279 if (ret < 0)
1280 goto fail;
1281 iova += len;
1282 i = j;
1283 }
1284 return dma_addr;
1285fail:
1286 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1287 __free_iova(mapping, dma_addr, size);
1288 return DMA_ERROR_CODE;
1289}
1290
1291static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1292{
89cfdb19 1293 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1294
1295 /*
1296 * add optional in-page offset from iova to size and align
1297 * result to page size
1298 */
1299 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1300 iova &= PAGE_MASK;
1301
1302 iommu_unmap(mapping->domain, iova, size);
1303 __free_iova(mapping, iova, size);
1304 return 0;
1305}
1306
665bad7b
HD
1307static struct page **__atomic_get_pages(void *addr)
1308{
36d0fd21
LA
1309 struct page *page;
1310 phys_addr_t phys;
1311
1312 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1313 page = phys_to_page(phys);
665bad7b 1314
36d0fd21 1315 return (struct page **)page;
665bad7b
HD
1316}
1317
955c757e 1318static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1319{
1320 struct vm_struct *area;
1321
665bad7b
HD
1322 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1323 return __atomic_get_pages(cpu_addr);
1324
955c757e
MS
1325 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1326 return cpu_addr;
1327
e9da6e99
MS
1328 area = find_vm_area(cpu_addr);
1329 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1330 return area->pages;
1331 return NULL;
1332}
1333
479ed93a
HD
1334static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1335 dma_addr_t *handle)
1336{
1337 struct page *page;
1338 void *addr;
1339
1340 addr = __alloc_from_pool(size, &page);
1341 if (!addr)
1342 return NULL;
1343
1344 *handle = __iommu_create_mapping(dev, &page, size);
1345 if (*handle == DMA_ERROR_CODE)
1346 goto err_mapping;
1347
1348 return addr;
1349
1350err_mapping:
1351 __free_from_pool(addr, size);
1352 return NULL;
1353}
1354
d5898291 1355static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
479ed93a
HD
1356 dma_addr_t handle, size_t size)
1357{
1358 __iommu_remove_mapping(dev, handle, size);
d5898291 1359 __free_from_pool(cpu_addr, size);
479ed93a
HD
1360}
1361
4ce63fcd
MS
1362static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1363 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1364{
71b55663 1365 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1366 struct page **pages;
1367 void *addr = NULL;
1368
1369 *handle = DMA_ERROR_CODE;
1370 size = PAGE_ALIGN(size);
1371
10c8562f 1372 if (!(gfp & __GFP_WAIT))
479ed93a
HD
1373 return __iommu_alloc_atomic(dev, size, handle);
1374
5b91a98c
RZ
1375 /*
1376 * Following is a work-around (a.k.a. hack) to prevent pages
1377 * with __GFP_COMP being passed to split_page() which cannot
1378 * handle them. The real problem is that this flag probably
1379 * should be 0 on ARM as it is not supported on this
1380 * platform; see CONFIG_HUGETLBFS.
1381 */
1382 gfp &= ~(__GFP_COMP);
1383
549a17e4 1384 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1385 if (!pages)
1386 return NULL;
1387
1388 *handle = __iommu_create_mapping(dev, pages, size);
1389 if (*handle == DMA_ERROR_CODE)
1390 goto err_buffer;
1391
955c757e
MS
1392 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1393 return pages;
1394
e9da6e99
MS
1395 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1396 __builtin_return_address(0));
4ce63fcd
MS
1397 if (!addr)
1398 goto err_mapping;
1399
1400 return addr;
1401
1402err_mapping:
1403 __iommu_remove_mapping(dev, *handle, size);
1404err_buffer:
549a17e4 1405 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1406 return NULL;
1407}
1408
1409static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1410 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1411 struct dma_attrs *attrs)
1412{
e9da6e99
MS
1413 unsigned long uaddr = vma->vm_start;
1414 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1415 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1416
1417 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1418
e9da6e99
MS
1419 if (!pages)
1420 return -ENXIO;
4ce63fcd 1421
e9da6e99
MS
1422 do {
1423 int ret = vm_insert_page(vma, uaddr, *pages++);
1424 if (ret) {
1425 pr_err("Remapping memory failed: %d\n", ret);
1426 return ret;
1427 }
1428 uaddr += PAGE_SIZE;
1429 usize -= PAGE_SIZE;
1430 } while (usize > 0);
4ce63fcd 1431
4ce63fcd
MS
1432 return 0;
1433}
1434
1435/*
1436 * free a page as defined by the above mapping.
1437 * Must not be called with IRQs disabled.
1438 */
1439void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1440 dma_addr_t handle, struct dma_attrs *attrs)
1441{
836bfa0d 1442 struct page **pages;
4ce63fcd
MS
1443 size = PAGE_ALIGN(size);
1444
836bfa0d
YC
1445 if (__in_atomic_pool(cpu_addr, size)) {
1446 __iommu_free_atomic(dev, cpu_addr, handle, size);
e9da6e99 1447 return;
4ce63fcd 1448 }
e9da6e99 1449
836bfa0d
YC
1450 pages = __iommu_get_pages(cpu_addr, attrs);
1451 if (!pages) {
1452 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1453 return;
1454 }
1455
955c757e 1456 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
513510dd
LA
1457 dma_common_free_remap(cpu_addr, size,
1458 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
955c757e 1459 }
e9da6e99
MS
1460
1461 __iommu_remove_mapping(dev, handle, size);
549a17e4 1462 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1463}
1464
dc2832e1
MS
1465static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1466 void *cpu_addr, dma_addr_t dma_addr,
1467 size_t size, struct dma_attrs *attrs)
1468{
1469 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1470 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1471
1472 if (!pages)
1473 return -ENXIO;
1474
1475 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1476 GFP_KERNEL);
4ce63fcd
MS
1477}
1478
c9b24996
AH
1479static int __dma_direction_to_prot(enum dma_data_direction dir)
1480{
1481 int prot;
1482
1483 switch (dir) {
1484 case DMA_BIDIRECTIONAL:
1485 prot = IOMMU_READ | IOMMU_WRITE;
1486 break;
1487 case DMA_TO_DEVICE:
1488 prot = IOMMU_READ;
1489 break;
1490 case DMA_FROM_DEVICE:
1491 prot = IOMMU_WRITE;
1492 break;
1493 default:
1494 prot = 0;
1495 }
1496
1497 return prot;
1498}
1499
4ce63fcd
MS
1500/*
1501 * Map a part of the scatter-gather list into contiguous io address space
1502 */
1503static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1504 size_t size, dma_addr_t *handle,
0fa478df
RH
1505 enum dma_data_direction dir, struct dma_attrs *attrs,
1506 bool is_coherent)
4ce63fcd 1507{
89cfdb19 1508 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1509 dma_addr_t iova, iova_base;
1510 int ret = 0;
1511 unsigned int count;
1512 struct scatterlist *s;
c9b24996 1513 int prot;
4ce63fcd
MS
1514
1515 size = PAGE_ALIGN(size);
1516 *handle = DMA_ERROR_CODE;
1517
1518 iova_base = iova = __alloc_iova(mapping, size);
1519 if (iova == DMA_ERROR_CODE)
1520 return -ENOMEM;
1521
1522 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1523 phys_addr_t phys = page_to_phys(sg_page(s));
1524 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1525
0fa478df
RH
1526 if (!is_coherent &&
1527 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1528 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1529
c9b24996
AH
1530 prot = __dma_direction_to_prot(dir);
1531
1532 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1533 if (ret < 0)
1534 goto fail;
1535 count += len >> PAGE_SHIFT;
1536 iova += len;
1537 }
1538 *handle = iova_base;
1539
1540 return 0;
1541fail:
1542 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1543 __free_iova(mapping, iova_base, size);
1544 return ret;
1545}
1546
0fa478df
RH
1547static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1548 enum dma_data_direction dir, struct dma_attrs *attrs,
1549 bool is_coherent)
4ce63fcd
MS
1550{
1551 struct scatterlist *s = sg, *dma = sg, *start = sg;
1552 int i, count = 0;
1553 unsigned int offset = s->offset;
1554 unsigned int size = s->offset + s->length;
1555 unsigned int max = dma_get_max_seg_size(dev);
1556
1557 for (i = 1; i < nents; i++) {
1558 s = sg_next(s);
1559
1560 s->dma_address = DMA_ERROR_CODE;
1561 s->dma_length = 0;
1562
1563 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1564 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1565 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1566 goto bad_mapping;
1567
1568 dma->dma_address += offset;
1569 dma->dma_length = size - offset;
1570
1571 size = offset = s->offset;
1572 start = s;
1573 dma = sg_next(dma);
1574 count += 1;
1575 }
1576 size += s->length;
1577 }
0fa478df
RH
1578 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1579 is_coherent) < 0)
4ce63fcd
MS
1580 goto bad_mapping;
1581
1582 dma->dma_address += offset;
1583 dma->dma_length = size - offset;
1584
1585 return count+1;
1586
1587bad_mapping:
1588 for_each_sg(sg, s, count, i)
1589 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1590 return 0;
1591}
1592
1593/**
0fa478df 1594 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1595 * @dev: valid struct device pointer
1596 * @sg: list of buffers
0fa478df
RH
1597 * @nents: number of buffers to map
1598 * @dir: DMA transfer direction
4ce63fcd 1599 *
0fa478df
RH
1600 * Map a set of i/o coherent buffers described by scatterlist in streaming
1601 * mode for DMA. The scatter gather list elements are merged together (if
1602 * possible) and tagged with the appropriate dma address and length. They are
1603 * obtained via sg_dma_{address,length}.
4ce63fcd 1604 */
0fa478df
RH
1605int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1606 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1607{
1608 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1609}
1610
1611/**
1612 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1613 * @dev: valid struct device pointer
1614 * @sg: list of buffers
1615 * @nents: number of buffers to map
1616 * @dir: DMA transfer direction
1617 *
1618 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1619 * The scatter gather list elements are merged together (if possible) and
1620 * tagged with the appropriate dma address and length. They are obtained via
1621 * sg_dma_{address,length}.
1622 */
1623int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1624 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1625{
1626 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1627}
1628
1629static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1630 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1631 bool is_coherent)
4ce63fcd
MS
1632{
1633 struct scatterlist *s;
1634 int i;
1635
1636 for_each_sg(sg, s, nents, i) {
1637 if (sg_dma_len(s))
1638 __iommu_remove_mapping(dev, sg_dma_address(s),
1639 sg_dma_len(s));
0fa478df 1640 if (!is_coherent &&
97ef952a 1641 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1642 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1643 s->length, dir);
1644 }
1645}
1646
0fa478df
RH
1647/**
1648 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1649 * @dev: valid struct device pointer
1650 * @sg: list of buffers
1651 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1652 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1653 *
1654 * Unmap a set of streaming mode DMA translations. Again, CPU access
1655 * rules concerning calls here are the same as for dma_unmap_single().
1656 */
1657void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1658 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1659{
1660 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1661}
1662
1663/**
1664 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1665 * @dev: valid struct device pointer
1666 * @sg: list of buffers
1667 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1668 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1669 *
1670 * Unmap a set of streaming mode DMA translations. Again, CPU access
1671 * rules concerning calls here are the same as for dma_unmap_single().
1672 */
1673void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1674 enum dma_data_direction dir, struct dma_attrs *attrs)
1675{
1676 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1677}
1678
4ce63fcd
MS
1679/**
1680 * arm_iommu_sync_sg_for_cpu
1681 * @dev: valid struct device pointer
1682 * @sg: list of buffers
1683 * @nents: number of buffers to map (returned from dma_map_sg)
1684 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1685 */
1686void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1687 int nents, enum dma_data_direction dir)
1688{
1689 struct scatterlist *s;
1690 int i;
1691
1692 for_each_sg(sg, s, nents, i)
0fa478df 1693 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1694
1695}
1696
1697/**
1698 * arm_iommu_sync_sg_for_device
1699 * @dev: valid struct device pointer
1700 * @sg: list of buffers
1701 * @nents: number of buffers to map (returned from dma_map_sg)
1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1703 */
1704void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1705 int nents, enum dma_data_direction dir)
1706{
1707 struct scatterlist *s;
1708 int i;
1709
1710 for_each_sg(sg, s, nents, i)
0fa478df 1711 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1712}
1713
1714
1715/**
0fa478df 1716 * arm_coherent_iommu_map_page
4ce63fcd
MS
1717 * @dev: valid struct device pointer
1718 * @page: page that buffer resides in
1719 * @offset: offset into page for start of buffer
1720 * @size: size of buffer to map
1721 * @dir: DMA transfer direction
1722 *
0fa478df 1723 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1724 */
0fa478df 1725static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1726 unsigned long offset, size_t size, enum dma_data_direction dir,
1727 struct dma_attrs *attrs)
1728{
89cfdb19 1729 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1730 dma_addr_t dma_addr;
13987d68 1731 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1732
4ce63fcd
MS
1733 dma_addr = __alloc_iova(mapping, len);
1734 if (dma_addr == DMA_ERROR_CODE)
1735 return dma_addr;
1736
c9b24996 1737 prot = __dma_direction_to_prot(dir);
13987d68
WD
1738
1739 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1740 if (ret < 0)
1741 goto fail;
1742
1743 return dma_addr + offset;
1744fail:
1745 __free_iova(mapping, dma_addr, len);
1746 return DMA_ERROR_CODE;
1747}
1748
0fa478df
RH
1749/**
1750 * arm_iommu_map_page
1751 * @dev: valid struct device pointer
1752 * @page: page that buffer resides in
1753 * @offset: offset into page for start of buffer
1754 * @size: size of buffer to map
1755 * @dir: DMA transfer direction
1756 *
1757 * IOMMU aware version of arm_dma_map_page()
1758 */
1759static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1760 unsigned long offset, size_t size, enum dma_data_direction dir,
1761 struct dma_attrs *attrs)
1762{
1763 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1764 __dma_page_cpu_to_dev(page, offset, size, dir);
1765
1766 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1767}
1768
1769/**
1770 * arm_coherent_iommu_unmap_page
1771 * @dev: valid struct device pointer
1772 * @handle: DMA address of buffer
1773 * @size: size of buffer (same as passed to dma_map_page)
1774 * @dir: DMA transfer direction (same as passed to dma_map_page)
1775 *
1776 * Coherent IOMMU aware version of arm_dma_unmap_page()
1777 */
1778static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1779 size_t size, enum dma_data_direction dir,
1780 struct dma_attrs *attrs)
1781{
89cfdb19 1782 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
0fa478df 1783 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1784 int offset = handle & ~PAGE_MASK;
1785 int len = PAGE_ALIGN(size + offset);
1786
1787 if (!iova)
1788 return;
1789
1790 iommu_unmap(mapping->domain, iova, len);
1791 __free_iova(mapping, iova, len);
1792}
1793
4ce63fcd
MS
1794/**
1795 * arm_iommu_unmap_page
1796 * @dev: valid struct device pointer
1797 * @handle: DMA address of buffer
1798 * @size: size of buffer (same as passed to dma_map_page)
1799 * @dir: DMA transfer direction (same as passed to dma_map_page)
1800 *
1801 * IOMMU aware version of arm_dma_unmap_page()
1802 */
1803static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1804 size_t size, enum dma_data_direction dir,
1805 struct dma_attrs *attrs)
1806{
89cfdb19 1807 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1808 dma_addr_t iova = handle & PAGE_MASK;
1809 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1810 int offset = handle & ~PAGE_MASK;
1811 int len = PAGE_ALIGN(size + offset);
1812
1813 if (!iova)
1814 return;
1815
0fa478df 1816 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1817 __dma_page_dev_to_cpu(page, offset, size, dir);
1818
1819 iommu_unmap(mapping->domain, iova, len);
1820 __free_iova(mapping, iova, len);
1821}
1822
1823static void arm_iommu_sync_single_for_cpu(struct device *dev,
1824 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1825{
89cfdb19 1826 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1827 dma_addr_t iova = handle & PAGE_MASK;
1828 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1829 unsigned int offset = handle & ~PAGE_MASK;
1830
1831 if (!iova)
1832 return;
1833
0fa478df 1834 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1835}
1836
1837static void arm_iommu_sync_single_for_device(struct device *dev,
1838 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1839{
89cfdb19 1840 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1841 dma_addr_t iova = handle & PAGE_MASK;
1842 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1843 unsigned int offset = handle & ~PAGE_MASK;
1844
1845 if (!iova)
1846 return;
1847
1848 __dma_page_cpu_to_dev(page, offset, size, dir);
1849}
1850
1851struct dma_map_ops iommu_ops = {
1852 .alloc = arm_iommu_alloc_attrs,
1853 .free = arm_iommu_free_attrs,
1854 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1855 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1856
1857 .map_page = arm_iommu_map_page,
1858 .unmap_page = arm_iommu_unmap_page,
1859 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1860 .sync_single_for_device = arm_iommu_sync_single_for_device,
1861
1862 .map_sg = arm_iommu_map_sg,
1863 .unmap_sg = arm_iommu_unmap_sg,
1864 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1865 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
d09e1333
HD
1866
1867 .set_dma_mask = arm_dma_set_mask,
4ce63fcd
MS
1868};
1869
0fa478df
RH
1870struct dma_map_ops iommu_coherent_ops = {
1871 .alloc = arm_iommu_alloc_attrs,
1872 .free = arm_iommu_free_attrs,
1873 .mmap = arm_iommu_mmap_attrs,
1874 .get_sgtable = arm_iommu_get_sgtable,
1875
1876 .map_page = arm_coherent_iommu_map_page,
1877 .unmap_page = arm_coherent_iommu_unmap_page,
1878
1879 .map_sg = arm_coherent_iommu_map_sg,
1880 .unmap_sg = arm_coherent_iommu_unmap_sg,
d09e1333
HD
1881
1882 .set_dma_mask = arm_dma_set_mask,
0fa478df
RH
1883};
1884
4ce63fcd
MS
1885/**
1886 * arm_iommu_create_mapping
1887 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1888 * @base: start address of the valid IO address space
68efd7d2 1889 * @size: maximum size of the valid IO address space
4ce63fcd
MS
1890 *
1891 * Creates a mapping structure which holds information about used/unused
1892 * IO address ranges, which is required to perform memory allocation and
1893 * mapping with IOMMU aware functions.
1894 *
1895 * The client device need to be attached to the mapping with
1896 * arm_iommu_attach_device function.
1897 */
1898struct dma_iommu_mapping *
1424532b 1899arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
4ce63fcd 1900{
68efd7d2
MS
1901 unsigned int bits = size >> PAGE_SHIFT;
1902 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 1903 struct dma_iommu_mapping *mapping;
68efd7d2 1904 int extensions = 1;
4ce63fcd
MS
1905 int err = -ENOMEM;
1906
1424532b
MS
1907 /* currently only 32-bit DMA address space is supported */
1908 if (size > DMA_BIT_MASK(32) + 1)
1909 return ERR_PTR(-ERANGE);
1910
68efd7d2 1911 if (!bitmap_size)
4ce63fcd
MS
1912 return ERR_PTR(-EINVAL);
1913
68efd7d2
MS
1914 if (bitmap_size > PAGE_SIZE) {
1915 extensions = bitmap_size / PAGE_SIZE;
1916 bitmap_size = PAGE_SIZE;
1917 }
1918
4ce63fcd
MS
1919 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1920 if (!mapping)
1921 goto err;
1922
68efd7d2
MS
1923 mapping->bitmap_size = bitmap_size;
1924 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
4d852ef8
AH
1925 GFP_KERNEL);
1926 if (!mapping->bitmaps)
4ce63fcd
MS
1927 goto err2;
1928
68efd7d2 1929 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
1930 if (!mapping->bitmaps[0])
1931 goto err3;
1932
1933 mapping->nr_bitmaps = 1;
1934 mapping->extensions = extensions;
4ce63fcd 1935 mapping->base = base;
68efd7d2 1936 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 1937
4ce63fcd
MS
1938 spin_lock_init(&mapping->lock);
1939
1940 mapping->domain = iommu_domain_alloc(bus);
1941 if (!mapping->domain)
4d852ef8 1942 goto err4;
4ce63fcd
MS
1943
1944 kref_init(&mapping->kref);
1945 return mapping;
4d852ef8
AH
1946err4:
1947 kfree(mapping->bitmaps[0]);
4ce63fcd 1948err3:
4d852ef8 1949 kfree(mapping->bitmaps);
4ce63fcd
MS
1950err2:
1951 kfree(mapping);
1952err:
1953 return ERR_PTR(err);
1954}
18177d12 1955EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
1956
1957static void release_iommu_mapping(struct kref *kref)
1958{
4d852ef8 1959 int i;
4ce63fcd
MS
1960 struct dma_iommu_mapping *mapping =
1961 container_of(kref, struct dma_iommu_mapping, kref);
1962
1963 iommu_domain_free(mapping->domain);
4d852ef8
AH
1964 for (i = 0; i < mapping->nr_bitmaps; i++)
1965 kfree(mapping->bitmaps[i]);
1966 kfree(mapping->bitmaps);
4ce63fcd
MS
1967 kfree(mapping);
1968}
1969
4d852ef8
AH
1970static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1971{
1972 int next_bitmap;
1973
462859aa 1974 if (mapping->nr_bitmaps >= mapping->extensions)
4d852ef8
AH
1975 return -EINVAL;
1976
1977 next_bitmap = mapping->nr_bitmaps;
1978 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1979 GFP_ATOMIC);
1980 if (!mapping->bitmaps[next_bitmap])
1981 return -ENOMEM;
1982
1983 mapping->nr_bitmaps++;
1984
1985 return 0;
1986}
1987
4ce63fcd
MS
1988void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1989{
1990 if (mapping)
1991 kref_put(&mapping->kref, release_iommu_mapping);
1992}
18177d12 1993EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd 1994
eab8d653
LP
1995static int __arm_iommu_attach_device(struct device *dev,
1996 struct dma_iommu_mapping *mapping)
1997{
1998 int err;
1999
2000 err = iommu_attach_device(mapping->domain, dev);
2001 if (err)
2002 return err;
2003
2004 kref_get(&mapping->kref);
89cfdb19 2005 to_dma_iommu_mapping(dev) = mapping;
eab8d653
LP
2006
2007 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2008 return 0;
2009}
2010
4ce63fcd
MS
2011/**
2012 * arm_iommu_attach_device
2013 * @dev: valid struct device pointer
2014 * @mapping: io address space mapping structure (returned from
2015 * arm_iommu_create_mapping)
2016 *
eab8d653
LP
2017 * Attaches specified io address space mapping to the provided device.
2018 * This replaces the dma operations (dma_map_ops pointer) with the
2019 * IOMMU aware version.
2020 *
4bb25789
WD
2021 * More than one client might be attached to the same io address space
2022 * mapping.
4ce63fcd
MS
2023 */
2024int arm_iommu_attach_device(struct device *dev,
2025 struct dma_iommu_mapping *mapping)
2026{
2027 int err;
2028
eab8d653 2029 err = __arm_iommu_attach_device(dev, mapping);
4ce63fcd
MS
2030 if (err)
2031 return err;
2032
eab8d653 2033 set_dma_ops(dev, &iommu_ops);
4ce63fcd
MS
2034 return 0;
2035}
18177d12 2036EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 2037
eab8d653 2038static void __arm_iommu_detach_device(struct device *dev)
6fe36758
HD
2039{
2040 struct dma_iommu_mapping *mapping;
2041
2042 mapping = to_dma_iommu_mapping(dev);
2043 if (!mapping) {
2044 dev_warn(dev, "Not attached\n");
2045 return;
2046 }
2047
2048 iommu_detach_device(mapping->domain, dev);
2049 kref_put(&mapping->kref, release_iommu_mapping);
89cfdb19 2050 to_dma_iommu_mapping(dev) = NULL;
6fe36758
HD
2051
2052 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2053}
eab8d653
LP
2054
2055/**
2056 * arm_iommu_detach_device
2057 * @dev: valid struct device pointer
2058 *
2059 * Detaches the provided device from a previously attached map.
2060 * This voids the dma operations (dma_map_ops pointer)
2061 */
2062void arm_iommu_detach_device(struct device *dev)
2063{
2064 __arm_iommu_detach_device(dev);
2065 set_dma_ops(dev, NULL);
2066}
18177d12 2067EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2068
4bb25789
WD
2069static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2070{
2071 return coherent ? &iommu_coherent_ops : &iommu_ops;
2072}
2073
2074static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2075 struct iommu_ops *iommu)
2076{
2077 struct dma_iommu_mapping *mapping;
2078
2079 if (!iommu)
2080 return false;
2081
2082 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2083 if (IS_ERR(mapping)) {
2084 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2085 size, dev_name(dev));
2086 return false;
2087 }
2088
eab8d653 2089 if (__arm_iommu_attach_device(dev, mapping)) {
4bb25789
WD
2090 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2091 dev_name(dev));
2092 arm_iommu_release_mapping(mapping);
2093 return false;
2094 }
2095
2096 return true;
2097}
2098
2099static void arm_teardown_iommu_dma_ops(struct device *dev)
2100{
89cfdb19 2101 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4bb25789 2102
c2273a18
WD
2103 if (!mapping)
2104 return;
2105
eab8d653 2106 __arm_iommu_detach_device(dev);
4bb25789
WD
2107 arm_iommu_release_mapping(mapping);
2108}
2109
2110#else
2111
2112static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2113 struct iommu_ops *iommu)
2114{
2115 return false;
2116}
2117
2118static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2119
2120#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2121
2122#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2123
2124static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2125{
2126 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2127}
2128
2129void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2130 struct iommu_ops *iommu, bool coherent)
2131{
2132 struct dma_map_ops *dma_ops;
2133
6f51ee70 2134 dev->archdata.dma_coherent = coherent;
4bb25789
WD
2135 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2136 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2137 else
2138 dma_ops = arm_get_dma_map_ops(coherent);
2139
2140 set_dma_ops(dev, dma_ops);
2141}
2142
2143void arch_teardown_dma_ops(struct device *dev)
2144{
2145 arm_teardown_iommu_dma_ops(dev);
2146}