ARM: 7907/1: lib: delay-loop: Add align directive to fix BogoMIPS calculation
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
11a5aa32 12#include <linux/bootmem.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/mm.h>
5a0e3ad6 15#include <linux/gfp.h>
1da177e4
LT
16#include <linux/errno.h>
17#include <linux/list.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/dma-mapping.h>
c7909509 21#include <linux/dma-contiguous.h>
39af22a7 22#include <linux/highmem.h>
c7909509 23#include <linux/memblock.h>
99d1717d 24#include <linux/slab.h>
4ce63fcd 25#include <linux/iommu.h>
e9da6e99 26#include <linux/io.h>
4ce63fcd 27#include <linux/vmalloc.h>
158e8bfe 28#include <linux/sizes.h>
1da177e4 29
23759dc6 30#include <asm/memory.h>
43377453 31#include <asm/highmem.h>
1da177e4 32#include <asm/cacheflush.h>
1da177e4 33#include <asm/tlbflush.h>
99d1717d 34#include <asm/mach/arch.h>
4ce63fcd 35#include <asm/dma-iommu.h>
c7909509
MS
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
37134cd5 39
022ae537
RK
40#include "mm.h"
41
15237e1f
MS
42/*
43 * The DMA API is built upon the notion of "buffer ownership". A buffer
44 * is either exclusively owned by the CPU (and therefore may be accessed
45 * by it) or exclusively owned by the DMA device. These helper functions
46 * represent the transitions between these two ownership states.
47 *
48 * Note, however, that on later ARMs, this notion does not work due to
49 * speculative prefetches. We model our approach on the assumption that
50 * the CPU does do speculative prefetches, which means we clean caches
51 * before transfers and delay cache invalidation until transfer completion.
52 *
15237e1f 53 */
51fde349 54static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 55 size_t, enum dma_data_direction);
51fde349 56static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
57 size_t, enum dma_data_direction);
58
2dc6a016
MS
59/**
60 * arm_dma_map_page - map a portion of a page for streaming DMA
61 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62 * @page: page that buffer resides in
63 * @offset: offset into page for start of buffer
64 * @size: size of buffer to map
65 * @dir: DMA transfer direction
66 *
67 * Ensure that any data held in the cache is appropriately discarded
68 * or written back.
69 *
70 * The device owns this memory once this call has completed. The CPU
71 * can regain ownership by calling dma_unmap_page().
72 */
51fde349 73static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
74 unsigned long offset, size_t size, enum dma_data_direction dir,
75 struct dma_attrs *attrs)
76{
dd37e940 77 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
78 __dma_page_cpu_to_dev(page, offset, size, dir);
79 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
80}
81
dd37e940
RH
82static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
83 unsigned long offset, size_t size, enum dma_data_direction dir,
84 struct dma_attrs *attrs)
85{
86 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
87}
88
2dc6a016
MS
89/**
90 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92 * @handle: DMA address of buffer
93 * @size: size of buffer (same as passed to dma_map_page)
94 * @dir: DMA transfer direction (same as passed to dma_map_page)
95 *
96 * Unmap a page streaming mode DMA translation. The handle and size
97 * must match what was provided in the previous dma_map_page() call.
98 * All other usages are undefined.
99 *
100 * After this call, reads by the CPU to the buffer are guaranteed to see
101 * whatever the device wrote there.
102 */
51fde349 103static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
104 size_t size, enum dma_data_direction dir,
105 struct dma_attrs *attrs)
106{
dd37e940 107 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
108 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
109 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
110}
111
51fde349 112static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
113 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114{
115 unsigned int offset = handle & (PAGE_SIZE - 1);
116 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 117 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
118}
119
51fde349 120static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
121 dma_addr_t handle, size_t size, enum dma_data_direction dir)
122{
123 unsigned int offset = handle & (PAGE_SIZE - 1);
124 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 125 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
126}
127
2dc6a016 128struct dma_map_ops arm_dma_ops = {
f99d6034
MS
129 .alloc = arm_dma_alloc,
130 .free = arm_dma_free,
131 .mmap = arm_dma_mmap,
dc2832e1 132 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
133 .map_page = arm_dma_map_page,
134 .unmap_page = arm_dma_unmap_page,
135 .map_sg = arm_dma_map_sg,
136 .unmap_sg = arm_dma_unmap_sg,
137 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
138 .sync_single_for_device = arm_dma_sync_single_for_device,
139 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
140 .sync_sg_for_device = arm_dma_sync_sg_for_device,
141 .set_dma_mask = arm_dma_set_mask,
142};
143EXPORT_SYMBOL(arm_dma_ops);
144
dd37e940
RH
145static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
146 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
147static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
148 dma_addr_t handle, struct dma_attrs *attrs);
149
150struct dma_map_ops arm_coherent_dma_ops = {
151 .alloc = arm_coherent_dma_alloc,
152 .free = arm_coherent_dma_free,
153 .mmap = arm_dma_mmap,
154 .get_sgtable = arm_dma_get_sgtable,
155 .map_page = arm_coherent_dma_map_page,
156 .map_sg = arm_dma_map_sg,
157 .set_dma_mask = arm_dma_set_mask,
158};
159EXPORT_SYMBOL(arm_coherent_dma_ops);
160
ab6494f0
CM
161static u64 get_coherent_dma_mask(struct device *dev)
162{
4dcfa600 163 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
164
165 if (dev) {
11a5aa32
RK
166 unsigned long max_dma_pfn;
167
ab6494f0
CM
168 mask = dev->coherent_dma_mask;
169
170 /*
171 * Sanity check the DMA mask - it must be non-zero, and
172 * must be able to be satisfied by a DMA allocation.
173 */
174 if (mask == 0) {
175 dev_warn(dev, "coherent DMA mask is unset\n");
176 return 0;
177 }
178
11a5aa32
RK
179 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
180
4dcfa600
RK
181 /*
182 * If the mask allows for more memory than we can address,
183 * and we actually have that much memory, then fail the
184 * allocation.
185 */
186 if (sizeof(mask) != sizeof(dma_addr_t) &&
187 mask > (dma_addr_t)~0 &&
11a5aa32 188 dma_to_pfn(dev, ~0) > max_dma_pfn) {
4dcfa600
RK
189 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
190 mask);
191 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
192 return 0;
193 }
194
195 /*
196 * Now check that the mask, when translated to a PFN,
197 * fits within the allowable addresses which we can
198 * allocate.
199 */
11a5aa32 200 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
4dcfa600
RK
201 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
202 mask,
203 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
204 arm_dma_pfn_limit + 1);
ab6494f0
CM
205 return 0;
206 }
207 }
1da177e4 208
ab6494f0
CM
209 return mask;
210}
211
c7909509
MS
212static void __dma_clear_buffer(struct page *page, size_t size)
213{
c7909509
MS
214 /*
215 * Ensure that the allocated pages are zeroed, and that any data
216 * lurking in the kernel direct-mapped region is invalidated.
217 */
9848e48f
MS
218 if (PageHighMem(page)) {
219 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
220 phys_addr_t end = base + size;
221 while (size > 0) {
222 void *ptr = kmap_atomic(page);
223 memset(ptr, 0, PAGE_SIZE);
224 dmac_flush_range(ptr, ptr + PAGE_SIZE);
225 kunmap_atomic(ptr);
226 page++;
227 size -= PAGE_SIZE;
228 }
229 outer_flush_range(base, end);
230 } else {
231 void *ptr = page_address(page);
4ce63fcd
MS
232 memset(ptr, 0, size);
233 dmac_flush_range(ptr, ptr + size);
234 outer_flush_range(__pa(ptr), __pa(ptr) + size);
235 }
c7909509
MS
236}
237
7a9a32a9
RK
238/*
239 * Allocate a DMA buffer for 'dev' of size 'size' using the
240 * specified gfp mask. Note that 'size' must be page aligned.
241 */
242static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
243{
244 unsigned long order = get_order(size);
245 struct page *page, *p, *e;
7a9a32a9
RK
246
247 page = alloc_pages(gfp, order);
248 if (!page)
249 return NULL;
250
251 /*
252 * Now split the huge page and free the excess pages
253 */
254 split_page(page, order);
255 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
256 __free_page(p);
257
c7909509 258 __dma_clear_buffer(page, size);
7a9a32a9
RK
259
260 return page;
261}
262
263/*
264 * Free a DMA buffer. 'size' must be page aligned.
265 */
266static void __dma_free_buffer(struct page *page, size_t size)
267{
268 struct page *e = page + (size >> PAGE_SHIFT);
269
270 while (page < e) {
271 __free_page(page);
272 page++;
273 }
274}
275
ab6494f0 276#ifdef CONFIG_MMU
e9da6e99 277#ifdef CONFIG_HUGETLB_PAGE
1355e2a6 278#warning ARM Coherent DMA allocator does not (yet) support huge TLB
e9da6e99 279#endif
a5e9d38b 280
e9da6e99 281static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
282 pgprot_t prot, struct page **ret_page,
283 const void *caller);
99d1717d 284
e9da6e99
MS
285static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
286 pgprot_t prot, struct page **ret_page,
287 const void *caller);
99d1717d 288
e9da6e99
MS
289static void *
290__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
291 const void *caller)
99d1717d 292{
e9da6e99
MS
293 struct vm_struct *area;
294 unsigned long addr;
99d1717d 295
e9da6e99
MS
296 /*
297 * DMA allocation can be mapped to user space, so lets
298 * set VM_USERMAP flags too.
299 */
300 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
301 caller);
302 if (!area)
303 return NULL;
304 addr = (unsigned long)area->addr;
305 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
99d1717d 306
e9da6e99
MS
307 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
308 vunmap((void *)addr);
309 return NULL;
310 }
311 return (void *)addr;
99d1717d 312}
1da177e4 313
e9da6e99 314static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 315{
e9da6e99
MS
316 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
317 struct vm_struct *area = find_vm_area(cpu_addr);
318 if (!area || (area->flags & flags) != flags) {
319 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
320 return;
99d1717d 321 }
e9da6e99
MS
322 unmap_kernel_range((unsigned long)cpu_addr, size);
323 vunmap(cpu_addr);
88c58f3b 324}
88c58f3b 325
6e5267aa
MS
326#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
327
e9da6e99
MS
328struct dma_pool {
329 size_t size;
330 spinlock_t lock;
331 unsigned long *bitmap;
332 unsigned long nr_pages;
333 void *vaddr;
6b3fe472 334 struct page **pages;
c7909509
MS
335};
336
e9da6e99 337static struct dma_pool atomic_pool = {
6e5267aa 338 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
e9da6e99 339};
c7909509
MS
340
341static int __init early_coherent_pool(char *p)
342{
e9da6e99 343 atomic_pool.size = memparse(p, &p);
c7909509
MS
344 return 0;
345}
346early_param("coherent_pool", early_coherent_pool);
347
6e5267aa
MS
348void __init init_dma_coherent_pool_size(unsigned long size)
349{
350 /*
351 * Catch any attempt to set the pool size too late.
352 */
353 BUG_ON(atomic_pool.vaddr);
354
355 /*
356 * Set architecture specific coherent pool size only if
357 * it has not been changed by kernel command line parameter.
358 */
359 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
360 atomic_pool.size = size;
361}
362
c7909509
MS
363/*
364 * Initialise the coherent pool for atomic allocations.
365 */
e9da6e99 366static int __init atomic_pool_init(void)
c7909509 367{
e9da6e99 368 struct dma_pool *pool = &atomic_pool;
c7909509 369 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
9d1400cf 370 gfp_t gfp = GFP_KERNEL | GFP_DMA;
e9da6e99
MS
371 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
372 unsigned long *bitmap;
c7909509 373 struct page *page;
6b3fe472 374 struct page **pages;
c7909509 375 void *ptr;
e9da6e99 376 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
c7909509 377
e9da6e99
MS
378 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
379 if (!bitmap)
380 goto no_bitmap;
c7909509 381
6b3fe472
HD
382 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
383 if (!pages)
384 goto no_pages;
385
f825c736 386 if (IS_ENABLED(CONFIG_DMA_CMA))
9848e48f
MS
387 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
388 atomic_pool_init);
e9da6e99 389 else
9d1400cf
MS
390 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
391 atomic_pool_init);
c7909509 392 if (ptr) {
6b3fe472
HD
393 int i;
394
395 for (i = 0; i < nr_pages; i++)
396 pages[i] = page + i;
397
e9da6e99
MS
398 spin_lock_init(&pool->lock);
399 pool->vaddr = ptr;
6b3fe472 400 pool->pages = pages;
e9da6e99
MS
401 pool->bitmap = bitmap;
402 pool->nr_pages = nr_pages;
403 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
404 (unsigned)pool->size / 1024);
c7909509
MS
405 return 0;
406 }
ec10665c
SK
407
408 kfree(pages);
6b3fe472 409no_pages:
e9da6e99
MS
410 kfree(bitmap);
411no_bitmap:
412 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
413 (unsigned)pool->size / 1024);
c7909509
MS
414 return -ENOMEM;
415}
416/*
417 * CMA is activated by core_initcall, so we must be called after it.
418 */
e9da6e99 419postcore_initcall(atomic_pool_init);
c7909509
MS
420
421struct dma_contig_early_reserve {
422 phys_addr_t base;
423 unsigned long size;
424};
425
426static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
427
428static int dma_mmu_remap_num __initdata;
429
430void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
431{
432 dma_mmu_remap[dma_mmu_remap_num].base = base;
433 dma_mmu_remap[dma_mmu_remap_num].size = size;
434 dma_mmu_remap_num++;
435}
436
437void __init dma_contiguous_remap(void)
438{
439 int i;
440 for (i = 0; i < dma_mmu_remap_num; i++) {
441 phys_addr_t start = dma_mmu_remap[i].base;
442 phys_addr_t end = start + dma_mmu_remap[i].size;
443 struct map_desc map;
444 unsigned long addr;
445
446 if (end > arm_lowmem_limit)
447 end = arm_lowmem_limit;
448 if (start >= end)
39f78e70 449 continue;
c7909509
MS
450
451 map.pfn = __phys_to_pfn(start);
452 map.virtual = __phys_to_virt(start);
453 map.length = end - start;
454 map.type = MT_MEMORY_DMA_READY;
455
456 /*
457 * Clear previous low-memory mapping
458 */
459 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 460 addr += PMD_SIZE)
c7909509
MS
461 pmd_clear(pmd_off_k(addr));
462
463 iotable_init(&map, 1);
464 }
465}
466
c7909509
MS
467static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
468 void *data)
469{
470 struct page *page = virt_to_page(addr);
471 pgprot_t prot = *(pgprot_t *)data;
472
473 set_pte_ext(pte, mk_pte(page, prot), 0);
474 return 0;
475}
476
477static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
478{
479 unsigned long start = (unsigned long) page_address(page);
480 unsigned end = start + size;
481
482 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
483 flush_tlb_kernel_range(start, end);
484}
485
486static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
487 pgprot_t prot, struct page **ret_page,
488 const void *caller)
489{
490 struct page *page;
491 void *ptr;
492 page = __dma_alloc_buffer(dev, size, gfp);
493 if (!page)
494 return NULL;
495
496 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
497 if (!ptr) {
498 __dma_free_buffer(page, size);
499 return NULL;
500 }
501
502 *ret_page = page;
503 return ptr;
504}
505
e9da6e99 506static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 507{
e9da6e99
MS
508 struct dma_pool *pool = &atomic_pool;
509 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
510 unsigned int pageno;
511 unsigned long flags;
512 void *ptr = NULL;
e4ea6918 513 unsigned long align_mask;
c7909509 514
e9da6e99
MS
515 if (!pool->vaddr) {
516 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
517 return NULL;
518 }
519
520 /*
521 * Align the region allocation - allocations from pool are rather
522 * small, so align them to their order in pages, minimum is a page
523 * size. This helps reduce fragmentation of the DMA space.
524 */
e4ea6918 525 align_mask = (1 << get_order(size)) - 1;
e9da6e99
MS
526
527 spin_lock_irqsave(&pool->lock, flags);
528 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
e4ea6918 529 0, count, align_mask);
e9da6e99
MS
530 if (pageno < pool->nr_pages) {
531 bitmap_set(pool->bitmap, pageno, count);
532 ptr = pool->vaddr + PAGE_SIZE * pageno;
6b3fe472 533 *ret_page = pool->pages[pageno];
fb71285f
MS
534 } else {
535 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
536 "Please increase it with coherent_pool= kernel parameter!\n",
537 (unsigned)pool->size / 1024);
c7909509 538 }
e9da6e99
MS
539 spin_unlock_irqrestore(&pool->lock, flags);
540
541 return ptr;
c7909509
MS
542}
543
21d0a759
HD
544static bool __in_atomic_pool(void *start, size_t size)
545{
546 struct dma_pool *pool = &atomic_pool;
547 void *end = start + size;
548 void *pool_start = pool->vaddr;
549 void *pool_end = pool->vaddr + pool->size;
550
f3d87524 551 if (start < pool_start || start >= pool_end)
21d0a759
HD
552 return false;
553
554 if (end <= pool_end)
555 return true;
556
557 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
558 start, end - 1, pool_start, pool_end - 1);
559
560 return false;
561}
562
e9da6e99 563static int __free_from_pool(void *start, size_t size)
c7909509 564{
e9da6e99
MS
565 struct dma_pool *pool = &atomic_pool;
566 unsigned long pageno, count;
567 unsigned long flags;
c7909509 568
21d0a759 569 if (!__in_atomic_pool(start, size))
c7909509
MS
570 return 0;
571
e9da6e99
MS
572 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
573 count = size >> PAGE_SHIFT;
574
575 spin_lock_irqsave(&pool->lock, flags);
576 bitmap_clear(pool->bitmap, pageno, count);
577 spin_unlock_irqrestore(&pool->lock, flags);
578
c7909509
MS
579 return 1;
580}
581
582static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f
MS
583 pgprot_t prot, struct page **ret_page,
584 const void *caller)
c7909509
MS
585{
586 unsigned long order = get_order(size);
587 size_t count = size >> PAGE_SHIFT;
588 struct page *page;
9848e48f 589 void *ptr;
c7909509
MS
590
591 page = dma_alloc_from_contiguous(dev, count, order);
592 if (!page)
593 return NULL;
594
595 __dma_clear_buffer(page, size);
c7909509 596
9848e48f
MS
597 if (PageHighMem(page)) {
598 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
599 if (!ptr) {
600 dma_release_from_contiguous(dev, page, count);
601 return NULL;
602 }
603 } else {
604 __dma_remap(page, size, prot);
605 ptr = page_address(page);
606 }
c7909509 607 *ret_page = page;
9848e48f 608 return ptr;
c7909509
MS
609}
610
611static void __free_from_contiguous(struct device *dev, struct page *page,
9848e48f 612 void *cpu_addr, size_t size)
c7909509 613{
9848e48f
MS
614 if (PageHighMem(page))
615 __dma_free_remap(cpu_addr, size);
616 else
617 __dma_remap(page, size, pgprot_kernel);
c7909509
MS
618 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
619}
620
f99d6034
MS
621static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
622{
623 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
624 pgprot_writecombine(prot) :
625 pgprot_dmacoherent(prot);
626 return prot;
627}
628
c7909509
MS
629#define nommu() 0
630
ab6494f0 631#else /* !CONFIG_MMU */
695ae0af 632
c7909509
MS
633#define nommu() 1
634
f99d6034 635#define __get_dma_pgprot(attrs, prot) __pgprot(0)
c7909509 636#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
e9da6e99 637#define __alloc_from_pool(size, ret_page) NULL
9848e48f 638#define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
c7909509 639#define __free_from_pool(cpu_addr, size) 0
9848e48f 640#define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
c7909509 641#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
642
643#endif /* CONFIG_MMU */
644
c7909509
MS
645static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
646 struct page **ret_page)
ab6494f0 647{
c7909509
MS
648 struct page *page;
649 page = __dma_alloc_buffer(dev, size, gfp);
650 if (!page)
651 return NULL;
652
653 *ret_page = page;
654 return page_address(page);
655}
656
657
658
659static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
dd37e940 660 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
c7909509
MS
661{
662 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 663 struct page *page = NULL;
31ebf944 664 void *addr;
ab6494f0 665
c7909509
MS
666#ifdef CONFIG_DMA_API_DEBUG
667 u64 limit = (mask + 1) & ~mask;
668 if (limit && size >= limit) {
669 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
670 size, mask);
671 return NULL;
672 }
673#endif
674
675 if (!mask)
676 return NULL;
677
678 if (mask < 0xffffffffULL)
679 gfp |= GFP_DMA;
680
ea2e7057
SB
681 /*
682 * Following is a work-around (a.k.a. hack) to prevent pages
683 * with __GFP_COMP being passed to split_page() which cannot
684 * handle them. The real problem is that this flag probably
685 * should be 0 on ARM as it is not supported on this
686 * platform; see CONFIG_HUGETLBFS.
687 */
688 gfp &= ~(__GFP_COMP);
689
553ac788 690 *handle = DMA_ERROR_CODE;
04da5694 691 size = PAGE_ALIGN(size);
ab6494f0 692
dd37e940 693 if (is_coherent || nommu())
c7909509 694 addr = __alloc_simple_buffer(dev, size, gfp, &page);
633dc92a 695 else if (!(gfp & __GFP_WAIT))
e9da6e99 696 addr = __alloc_from_pool(size, &page);
f825c736 697 else if (!IS_ENABLED(CONFIG_DMA_CMA))
c7909509 698 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
31ebf944 699 else
9848e48f 700 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
695ae0af 701
31ebf944 702 if (addr)
9eedd963 703 *handle = pfn_to_dma(dev, page_to_pfn(page));
695ae0af 704
31ebf944
RK
705 return addr;
706}
1da177e4
LT
707
708/*
709 * Allocate DMA-coherent memory space and return both the kernel remapped
710 * virtual and bus address for that space.
711 */
f99d6034
MS
712void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
713 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 714{
0ea1ec71 715 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268
DB
716 void *memory;
717
718 if (dma_alloc_from_coherent(dev, size, handle, &memory))
719 return memory;
720
dd37e940
RH
721 return __dma_alloc(dev, size, handle, gfp, prot, false,
722 __builtin_return_address(0));
723}
724
725static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
726 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
727{
0ea1ec71 728 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
dd37e940
RH
729 void *memory;
730
731 if (dma_alloc_from_coherent(dev, size, handle, &memory))
732 return memory;
733
734 return __dma_alloc(dev, size, handle, gfp, prot, true,
45cd5290 735 __builtin_return_address(0));
1da177e4 736}
1da177e4
LT
737
738/*
f99d6034 739 * Create userspace mapping for the DMA-coherent memory.
1da177e4 740 */
f99d6034
MS
741int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
742 void *cpu_addr, dma_addr_t dma_addr, size_t size,
743 struct dma_attrs *attrs)
1da177e4 744{
ab6494f0
CM
745 int ret = -ENXIO;
746#ifdef CONFIG_MMU
50262a4b
MS
747 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
748 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 749 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
750 unsigned long off = vma->vm_pgoff;
751
f99d6034
MS
752 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
753
47142f07
MS
754 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
755 return ret;
756
50262a4b
MS
757 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
758 ret = remap_pfn_range(vma, vma->vm_start,
759 pfn + off,
760 vma->vm_end - vma->vm_start,
761 vma->vm_page_prot);
762 }
ab6494f0 763#endif /* CONFIG_MMU */
1da177e4
LT
764
765 return ret;
766}
767
1da177e4 768/*
c7909509 769 * Free a buffer as defined by the above mapping.
1da177e4 770 */
dd37e940
RH
771static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
772 dma_addr_t handle, struct dma_attrs *attrs,
773 bool is_coherent)
1da177e4 774{
c7909509 775 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
5edf71ae 776
1fe53268
DB
777 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
778 return;
779
3e82d012
RK
780 size = PAGE_ALIGN(size);
781
dd37e940 782 if (is_coherent || nommu()) {
c7909509 783 __dma_free_buffer(page, size);
d9e0d149
AK
784 } else if (__free_from_pool(cpu_addr, size)) {
785 return;
f825c736 786 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
695ae0af 787 __dma_free_remap(cpu_addr, size);
c7909509
MS
788 __dma_free_buffer(page, size);
789 } else {
c7909509
MS
790 /*
791 * Non-atomic allocations cannot be freed with IRQs disabled
792 */
793 WARN_ON(irqs_disabled());
9848e48f 794 __free_from_contiguous(dev, page, cpu_addr, size);
c7909509 795 }
1da177e4 796}
afd1a321 797
dd37e940
RH
798void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
799 dma_addr_t handle, struct dma_attrs *attrs)
800{
801 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
802}
803
804static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
805 dma_addr_t handle, struct dma_attrs *attrs)
806{
807 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
808}
809
dc2832e1
MS
810int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
811 void *cpu_addr, dma_addr_t handle, size_t size,
812 struct dma_attrs *attrs)
813{
814 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
815 int ret;
816
817 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
818 if (unlikely(ret))
819 return ret;
820
821 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
822 return 0;
823}
824
4ea0d737 825static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
826 size_t size, enum dma_data_direction dir,
827 void (*op)(const void *, size_t, int))
43377453 828{
15653371
RK
829 unsigned long pfn;
830 size_t left = size;
831
832 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
833 offset %= PAGE_SIZE;
834
43377453
NP
835 /*
836 * A single sg entry may refer to multiple physically contiguous
837 * pages. But we still need to process highmem pages individually.
838 * If highmem is not configured then the bulk of this loop gets
839 * optimized out.
840 */
43377453
NP
841 do {
842 size_t len = left;
93f1d629
RK
843 void *vaddr;
844
15653371
RK
845 page = pfn_to_page(pfn);
846
93f1d629 847 if (PageHighMem(page)) {
15653371 848 if (len + offset > PAGE_SIZE)
93f1d629 849 len = PAGE_SIZE - offset;
dd0f67f4
JK
850
851 if (cache_is_vipt_nonaliasing()) {
39af22a7 852 vaddr = kmap_atomic(page);
7e5a69e8 853 op(vaddr + offset, len, dir);
39af22a7 854 kunmap_atomic(vaddr);
dd0f67f4
JK
855 } else {
856 vaddr = kmap_high_get(page);
857 if (vaddr) {
858 op(vaddr + offset, len, dir);
859 kunmap_high(page);
860 }
43377453 861 }
93f1d629
RK
862 } else {
863 vaddr = page_address(page) + offset;
a9c9147e 864 op(vaddr, len, dir);
43377453 865 }
43377453 866 offset = 0;
15653371 867 pfn++;
43377453
NP
868 left -= len;
869 } while (left);
870}
4ea0d737 871
51fde349
MS
872/*
873 * Make an area consistent for devices.
874 * Note: Drivers should NOT use this function directly, as it will break
875 * platforms with CONFIG_DMABOUNCE.
876 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
877 */
878static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
879 size_t size, enum dma_data_direction dir)
880{
65af191a 881 unsigned long paddr;
65af191a 882
a9c9147e 883 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
884
885 paddr = page_to_phys(page) + off;
2ffe2da3
RK
886 if (dir == DMA_FROM_DEVICE) {
887 outer_inv_range(paddr, paddr + size);
888 } else {
889 outer_clean_range(paddr, paddr + size);
890 }
891 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 892}
4ea0d737 893
51fde349 894static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
895 size_t size, enum dma_data_direction dir)
896{
2ffe2da3
RK
897 unsigned long paddr = page_to_phys(page) + off;
898
899 /* FIXME: non-speculating: not required */
900 /* don't bother invalidating if DMA to device */
901 if (dir != DMA_TO_DEVICE)
902 outer_inv_range(paddr, paddr + size);
903
a9c9147e 904 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
c0177800
CM
905
906 /*
b2a234ed 907 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 908 */
b2a234ed
ML
909 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
910 unsigned long pfn;
911 size_t left = size;
912
913 pfn = page_to_pfn(page) + off / PAGE_SIZE;
914 off %= PAGE_SIZE;
915 if (off) {
916 pfn++;
917 left -= PAGE_SIZE - off;
918 }
919 while (left >= PAGE_SIZE) {
920 page = pfn_to_page(pfn++);
921 set_bit(PG_dcache_clean, &page->flags);
922 left -= PAGE_SIZE;
923 }
924 }
4ea0d737 925}
43377453 926
afd1a321 927/**
2a550e73 928 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
929 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
930 * @sg: list of buffers
931 * @nents: number of buffers to map
932 * @dir: DMA transfer direction
933 *
934 * Map a set of buffers described by scatterlist in streaming mode for DMA.
935 * This is the scatter-gather version of the dma_map_single interface.
936 * Here the scatter gather list elements are each tagged with the
937 * appropriate dma address and length. They are obtained via
938 * sg_dma_{address,length}.
939 *
940 * Device ownership issues as mentioned for dma_map_single are the same
941 * here.
942 */
2dc6a016
MS
943int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
944 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 945{
2a550e73 946 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 947 struct scatterlist *s;
01135d92 948 int i, j;
afd1a321
RK
949
950 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
951#ifdef CONFIG_NEED_SG_DMA_LENGTH
952 s->dma_length = s->length;
953#endif
2a550e73
MS
954 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
955 s->length, dir, attrs);
01135d92
RK
956 if (dma_mapping_error(dev, s->dma_address))
957 goto bad_mapping;
afd1a321 958 }
afd1a321 959 return nents;
01135d92
RK
960
961 bad_mapping:
962 for_each_sg(sg, s, i, j)
2a550e73 963 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 964 return 0;
afd1a321 965}
afd1a321
RK
966
967/**
2a550e73 968 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
969 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
970 * @sg: list of buffers
0adfca6f 971 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
972 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
973 *
974 * Unmap a set of streaming mode DMA translations. Again, CPU access
975 * rules concerning calls here are the same as for dma_unmap_single().
976 */
2dc6a016
MS
977void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
978 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 979{
2a550e73 980 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 981 struct scatterlist *s;
01135d92 982
01135d92 983 int i;
24056f52 984
01135d92 985 for_each_sg(sg, s, nents, i)
2a550e73 986 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 987}
afd1a321
RK
988
989/**
2a550e73 990 * arm_dma_sync_sg_for_cpu
afd1a321
RK
991 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
992 * @sg: list of buffers
993 * @nents: number of buffers to map (returned from dma_map_sg)
994 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
995 */
2dc6a016 996void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
997 int nents, enum dma_data_direction dir)
998{
2a550e73 999 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1000 struct scatterlist *s;
1001 int i;
1002
2a550e73
MS
1003 for_each_sg(sg, s, nents, i)
1004 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1005 dir);
afd1a321 1006}
afd1a321
RK
1007
1008/**
2a550e73 1009 * arm_dma_sync_sg_for_device
afd1a321
RK
1010 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1011 * @sg: list of buffers
1012 * @nents: number of buffers to map (returned from dma_map_sg)
1013 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1014 */
2dc6a016 1015void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1016 int nents, enum dma_data_direction dir)
1017{
2a550e73 1018 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1019 struct scatterlist *s;
1020 int i;
1021
2a550e73
MS
1022 for_each_sg(sg, s, nents, i)
1023 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1024 dir);
afd1a321 1025}
24056f52 1026
022ae537
RK
1027/*
1028 * Return whether the given device DMA address mask can be supported
1029 * properly. For example, if your device can only drive the low 24-bits
1030 * during bus mastering, then you would pass 0x00ffffff as the mask
1031 * to this function.
1032 */
1033int dma_supported(struct device *dev, u64 mask)
1034{
4dcfa600
RK
1035 unsigned long limit;
1036
1037 /*
1038 * If the mask allows for more memory than we can address,
1039 * and we actually have that much memory, then we must
1040 * indicate that DMA to this device is not supported.
1041 */
1042 if (sizeof(mask) != sizeof(dma_addr_t) &&
1043 mask > (dma_addr_t)~0 &&
1044 dma_to_pfn(dev, ~0) > arm_dma_pfn_limit)
1045 return 0;
1046
1047 /*
1048 * Translate the device's DMA mask to a PFN limit. This
1049 * PFN number includes the page which we can DMA to.
1050 */
1051 limit = dma_to_pfn(dev, mask);
1052
1053 if (limit < arm_dma_pfn_limit)
022ae537 1054 return 0;
4dcfa600 1055
022ae537
RK
1056 return 1;
1057}
1058EXPORT_SYMBOL(dma_supported);
1059
87b54e78 1060int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
1061{
1062 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1063 return -EIO;
1064
022ae537 1065 *dev->dma_mask = dma_mask;
022ae537
RK
1066
1067 return 0;
1068}
022ae537 1069
24056f52
RK
1070#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1071
1072static int __init dma_debug_do_init(void)
1073{
1074 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1075 return 0;
1076}
1077fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1078
1079#ifdef CONFIG_ARM_DMA_USE_IOMMU
1080
1081/* IOMMU */
1082
1083static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1084 size_t size)
1085{
1086 unsigned int order = get_order(size);
1087 unsigned int align = 0;
1088 unsigned int count, start;
1089 unsigned long flags;
1090
60460abf
SWK
1091 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1092 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1093
4ce63fcd
MS
1094 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1095 (1 << mapping->order) - 1) >> mapping->order;
1096
1097 if (order > mapping->order)
1098 align = (1 << (order - mapping->order)) - 1;
1099
1100 spin_lock_irqsave(&mapping->lock, flags);
1101 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1102 count, align);
1103 if (start > mapping->bits) {
1104 spin_unlock_irqrestore(&mapping->lock, flags);
1105 return DMA_ERROR_CODE;
1106 }
1107
1108 bitmap_set(mapping->bitmap, start, count);
1109 spin_unlock_irqrestore(&mapping->lock, flags);
1110
1111 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1112}
1113
1114static inline void __free_iova(struct dma_iommu_mapping *mapping,
1115 dma_addr_t addr, size_t size)
1116{
1117 unsigned int start = (addr - mapping->base) >>
1118 (mapping->order + PAGE_SHIFT);
1119 unsigned int count = ((size >> PAGE_SHIFT) +
1120 (1 << mapping->order) - 1) >> mapping->order;
1121 unsigned long flags;
1122
1123 spin_lock_irqsave(&mapping->lock, flags);
1124 bitmap_clear(mapping->bitmap, start, count);
1125 spin_unlock_irqrestore(&mapping->lock, flags);
1126}
1127
549a17e4
MS
1128static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1129 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1130{
1131 struct page **pages;
1132 int count = size >> PAGE_SHIFT;
1133 int array_size = count * sizeof(struct page *);
1134 int i = 0;
1135
1136 if (array_size <= PAGE_SIZE)
1137 pages = kzalloc(array_size, gfp);
1138 else
1139 pages = vzalloc(array_size);
1140 if (!pages)
1141 return NULL;
1142
549a17e4
MS
1143 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1144 {
1145 unsigned long order = get_order(size);
1146 struct page *page;
1147
1148 page = dma_alloc_from_contiguous(dev, count, order);
1149 if (!page)
1150 goto error;
1151
1152 __dma_clear_buffer(page, size);
1153
1154 for (i = 0; i < count; i++)
1155 pages[i] = page + i;
1156
1157 return pages;
1158 }
1159
f8669bef
MS
1160 /*
1161 * IOMMU can map any pages, so himem can also be used here
1162 */
1163 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1164
4ce63fcd 1165 while (count) {
593f4735 1166 int j, order = __fls(count);
4ce63fcd 1167
f8669bef 1168 pages[i] = alloc_pages(gfp, order);
4ce63fcd 1169 while (!pages[i] && order)
f8669bef 1170 pages[i] = alloc_pages(gfp, --order);
4ce63fcd
MS
1171 if (!pages[i])
1172 goto error;
1173
5a796eeb 1174 if (order) {
4ce63fcd 1175 split_page(pages[i], order);
5a796eeb
HD
1176 j = 1 << order;
1177 while (--j)
1178 pages[i + j] = pages[i] + j;
1179 }
4ce63fcd
MS
1180
1181 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1182 i += 1 << order;
1183 count -= 1 << order;
1184 }
1185
1186 return pages;
1187error:
9fa8af91 1188 while (i--)
4ce63fcd
MS
1189 if (pages[i])
1190 __free_pages(pages[i], 0);
46c87852 1191 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1192 kfree(pages);
1193 else
1194 vfree(pages);
1195 return NULL;
1196}
1197
549a17e4
MS
1198static int __iommu_free_buffer(struct device *dev, struct page **pages,
1199 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1200{
1201 int count = size >> PAGE_SHIFT;
1202 int array_size = count * sizeof(struct page *);
1203 int i;
549a17e4
MS
1204
1205 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1206 dma_release_from_contiguous(dev, pages[0], count);
1207 } else {
1208 for (i = 0; i < count; i++)
1209 if (pages[i])
1210 __free_pages(pages[i], 0);
1211 }
1212
46c87852 1213 if (array_size <= PAGE_SIZE)
4ce63fcd
MS
1214 kfree(pages);
1215 else
1216 vfree(pages);
1217 return 0;
1218}
1219
1220/*
1221 * Create a CPU mapping for a specified pages
1222 */
1223static void *
e9da6e99
MS
1224__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1225 const void *caller)
4ce63fcd 1226{
e9da6e99
MS
1227 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1228 struct vm_struct *area;
1229 unsigned long p;
4ce63fcd 1230
e9da6e99
MS
1231 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1232 caller);
1233 if (!area)
4ce63fcd 1234 return NULL;
4ce63fcd 1235
e9da6e99
MS
1236 area->pages = pages;
1237 area->nr_pages = nr_pages;
1238 p = (unsigned long)area->addr;
4ce63fcd 1239
e9da6e99
MS
1240 for (i = 0; i < nr_pages; i++) {
1241 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1242 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1243 goto err;
1244 p += PAGE_SIZE;
4ce63fcd 1245 }
e9da6e99
MS
1246 return area->addr;
1247err:
1248 unmap_kernel_range((unsigned long)area->addr, size);
1249 vunmap(area->addr);
4ce63fcd
MS
1250 return NULL;
1251}
1252
1253/*
1254 * Create a mapping in device IO address space for specified pages
1255 */
1256static dma_addr_t
1257__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1258{
1259 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1260 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1261 dma_addr_t dma_addr, iova;
1262 int i, ret = DMA_ERROR_CODE;
1263
1264 dma_addr = __alloc_iova(mapping, size);
1265 if (dma_addr == DMA_ERROR_CODE)
1266 return dma_addr;
1267
1268 iova = dma_addr;
1269 for (i = 0; i < count; ) {
1270 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1271 phys_addr_t phys = page_to_phys(pages[i]);
1272 unsigned int len, j;
1273
1274 for (j = i + 1; j < count; j++, next_pfn++)
1275 if (page_to_pfn(pages[j]) != next_pfn)
1276 break;
1277
1278 len = (j - i) << PAGE_SHIFT;
c9b24996
AH
1279 ret = iommu_map(mapping->domain, iova, phys, len,
1280 IOMMU_READ|IOMMU_WRITE);
4ce63fcd
MS
1281 if (ret < 0)
1282 goto fail;
1283 iova += len;
1284 i = j;
1285 }
1286 return dma_addr;
1287fail:
1288 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1289 __free_iova(mapping, dma_addr, size);
1290 return DMA_ERROR_CODE;
1291}
1292
1293static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1294{
1295 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1296
1297 /*
1298 * add optional in-page offset from iova to size and align
1299 * result to page size
1300 */
1301 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1302 iova &= PAGE_MASK;
1303
1304 iommu_unmap(mapping->domain, iova, size);
1305 __free_iova(mapping, iova, size);
1306 return 0;
1307}
1308
665bad7b
HD
1309static struct page **__atomic_get_pages(void *addr)
1310{
1311 struct dma_pool *pool = &atomic_pool;
1312 struct page **pages = pool->pages;
1313 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1314
1315 return pages + offs;
1316}
1317
955c757e 1318static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1319{
1320 struct vm_struct *area;
1321
665bad7b
HD
1322 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1323 return __atomic_get_pages(cpu_addr);
1324
955c757e
MS
1325 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1326 return cpu_addr;
1327
e9da6e99
MS
1328 area = find_vm_area(cpu_addr);
1329 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1330 return area->pages;
1331 return NULL;
1332}
1333
479ed93a
HD
1334static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1335 dma_addr_t *handle)
1336{
1337 struct page *page;
1338 void *addr;
1339
1340 addr = __alloc_from_pool(size, &page);
1341 if (!addr)
1342 return NULL;
1343
1344 *handle = __iommu_create_mapping(dev, &page, size);
1345 if (*handle == DMA_ERROR_CODE)
1346 goto err_mapping;
1347
1348 return addr;
1349
1350err_mapping:
1351 __free_from_pool(addr, size);
1352 return NULL;
1353}
1354
d5898291 1355static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
479ed93a
HD
1356 dma_addr_t handle, size_t size)
1357{
1358 __iommu_remove_mapping(dev, handle, size);
d5898291 1359 __free_from_pool(cpu_addr, size);
479ed93a
HD
1360}
1361
4ce63fcd
MS
1362static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1363 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1364{
1365 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1366 struct page **pages;
1367 void *addr = NULL;
1368
1369 *handle = DMA_ERROR_CODE;
1370 size = PAGE_ALIGN(size);
1371
479ed93a
HD
1372 if (gfp & GFP_ATOMIC)
1373 return __iommu_alloc_atomic(dev, size, handle);
1374
5b91a98c
RZ
1375 /*
1376 * Following is a work-around (a.k.a. hack) to prevent pages
1377 * with __GFP_COMP being passed to split_page() which cannot
1378 * handle them. The real problem is that this flag probably
1379 * should be 0 on ARM as it is not supported on this
1380 * platform; see CONFIG_HUGETLBFS.
1381 */
1382 gfp &= ~(__GFP_COMP);
1383
549a17e4 1384 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1385 if (!pages)
1386 return NULL;
1387
1388 *handle = __iommu_create_mapping(dev, pages, size);
1389 if (*handle == DMA_ERROR_CODE)
1390 goto err_buffer;
1391
955c757e
MS
1392 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1393 return pages;
1394
e9da6e99
MS
1395 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1396 __builtin_return_address(0));
4ce63fcd
MS
1397 if (!addr)
1398 goto err_mapping;
1399
1400 return addr;
1401
1402err_mapping:
1403 __iommu_remove_mapping(dev, *handle, size);
1404err_buffer:
549a17e4 1405 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1406 return NULL;
1407}
1408
1409static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1410 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1411 struct dma_attrs *attrs)
1412{
e9da6e99
MS
1413 unsigned long uaddr = vma->vm_start;
1414 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1415 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
4ce63fcd
MS
1416
1417 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1418
e9da6e99
MS
1419 if (!pages)
1420 return -ENXIO;
4ce63fcd 1421
e9da6e99
MS
1422 do {
1423 int ret = vm_insert_page(vma, uaddr, *pages++);
1424 if (ret) {
1425 pr_err("Remapping memory failed: %d\n", ret);
1426 return ret;
1427 }
1428 uaddr += PAGE_SIZE;
1429 usize -= PAGE_SIZE;
1430 } while (usize > 0);
4ce63fcd 1431
4ce63fcd
MS
1432 return 0;
1433}
1434
1435/*
1436 * free a page as defined by the above mapping.
1437 * Must not be called with IRQs disabled.
1438 */
1439void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1440 dma_addr_t handle, struct dma_attrs *attrs)
1441{
836bfa0d 1442 struct page **pages;
4ce63fcd
MS
1443 size = PAGE_ALIGN(size);
1444
836bfa0d
YC
1445 if (__in_atomic_pool(cpu_addr, size)) {
1446 __iommu_free_atomic(dev, cpu_addr, handle, size);
e9da6e99 1447 return;
4ce63fcd 1448 }
e9da6e99 1449
836bfa0d
YC
1450 pages = __iommu_get_pages(cpu_addr, attrs);
1451 if (!pages) {
1452 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1453 return;
1454 }
1455
955c757e
MS
1456 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1457 unmap_kernel_range((unsigned long)cpu_addr, size);
1458 vunmap(cpu_addr);
1459 }
e9da6e99
MS
1460
1461 __iommu_remove_mapping(dev, handle, size);
549a17e4 1462 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1463}
1464
dc2832e1
MS
1465static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1466 void *cpu_addr, dma_addr_t dma_addr,
1467 size_t size, struct dma_attrs *attrs)
1468{
1469 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1470 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1471
1472 if (!pages)
1473 return -ENXIO;
1474
1475 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1476 GFP_KERNEL);
4ce63fcd
MS
1477}
1478
c9b24996
AH
1479static int __dma_direction_to_prot(enum dma_data_direction dir)
1480{
1481 int prot;
1482
1483 switch (dir) {
1484 case DMA_BIDIRECTIONAL:
1485 prot = IOMMU_READ | IOMMU_WRITE;
1486 break;
1487 case DMA_TO_DEVICE:
1488 prot = IOMMU_READ;
1489 break;
1490 case DMA_FROM_DEVICE:
1491 prot = IOMMU_WRITE;
1492 break;
1493 default:
1494 prot = 0;
1495 }
1496
1497 return prot;
1498}
1499
4ce63fcd
MS
1500/*
1501 * Map a part of the scatter-gather list into contiguous io address space
1502 */
1503static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1504 size_t size, dma_addr_t *handle,
0fa478df
RH
1505 enum dma_data_direction dir, struct dma_attrs *attrs,
1506 bool is_coherent)
4ce63fcd
MS
1507{
1508 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1509 dma_addr_t iova, iova_base;
1510 int ret = 0;
1511 unsigned int count;
1512 struct scatterlist *s;
c9b24996 1513 int prot;
4ce63fcd
MS
1514
1515 size = PAGE_ALIGN(size);
1516 *handle = DMA_ERROR_CODE;
1517
1518 iova_base = iova = __alloc_iova(mapping, size);
1519 if (iova == DMA_ERROR_CODE)
1520 return -ENOMEM;
1521
1522 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1523 phys_addr_t phys = page_to_phys(sg_page(s));
1524 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1525
0fa478df
RH
1526 if (!is_coherent &&
1527 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1528 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1529
c9b24996
AH
1530 prot = __dma_direction_to_prot(dir);
1531
1532 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1533 if (ret < 0)
1534 goto fail;
1535 count += len >> PAGE_SHIFT;
1536 iova += len;
1537 }
1538 *handle = iova_base;
1539
1540 return 0;
1541fail:
1542 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1543 __free_iova(mapping, iova_base, size);
1544 return ret;
1545}
1546
0fa478df
RH
1547static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1548 enum dma_data_direction dir, struct dma_attrs *attrs,
1549 bool is_coherent)
4ce63fcd
MS
1550{
1551 struct scatterlist *s = sg, *dma = sg, *start = sg;
1552 int i, count = 0;
1553 unsigned int offset = s->offset;
1554 unsigned int size = s->offset + s->length;
1555 unsigned int max = dma_get_max_seg_size(dev);
1556
1557 for (i = 1; i < nents; i++) {
1558 s = sg_next(s);
1559
1560 s->dma_address = DMA_ERROR_CODE;
1561 s->dma_length = 0;
1562
1563 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1564 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1565 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1566 goto bad_mapping;
1567
1568 dma->dma_address += offset;
1569 dma->dma_length = size - offset;
1570
1571 size = offset = s->offset;
1572 start = s;
1573 dma = sg_next(dma);
1574 count += 1;
1575 }
1576 size += s->length;
1577 }
0fa478df
RH
1578 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1579 is_coherent) < 0)
4ce63fcd
MS
1580 goto bad_mapping;
1581
1582 dma->dma_address += offset;
1583 dma->dma_length = size - offset;
1584
1585 return count+1;
1586
1587bad_mapping:
1588 for_each_sg(sg, s, count, i)
1589 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1590 return 0;
1591}
1592
1593/**
0fa478df 1594 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1595 * @dev: valid struct device pointer
1596 * @sg: list of buffers
0fa478df
RH
1597 * @nents: number of buffers to map
1598 * @dir: DMA transfer direction
4ce63fcd 1599 *
0fa478df
RH
1600 * Map a set of i/o coherent buffers described by scatterlist in streaming
1601 * mode for DMA. The scatter gather list elements are merged together (if
1602 * possible) and tagged with the appropriate dma address and length. They are
1603 * obtained via sg_dma_{address,length}.
4ce63fcd 1604 */
0fa478df
RH
1605int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1606 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1607{
1608 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1609}
1610
1611/**
1612 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1613 * @dev: valid struct device pointer
1614 * @sg: list of buffers
1615 * @nents: number of buffers to map
1616 * @dir: DMA transfer direction
1617 *
1618 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1619 * The scatter gather list elements are merged together (if possible) and
1620 * tagged with the appropriate dma address and length. They are obtained via
1621 * sg_dma_{address,length}.
1622 */
1623int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1624 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1625{
1626 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1627}
1628
1629static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1630 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1631 bool is_coherent)
4ce63fcd
MS
1632{
1633 struct scatterlist *s;
1634 int i;
1635
1636 for_each_sg(sg, s, nents, i) {
1637 if (sg_dma_len(s))
1638 __iommu_remove_mapping(dev, sg_dma_address(s),
1639 sg_dma_len(s));
0fa478df 1640 if (!is_coherent &&
97ef952a 1641 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1642 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1643 s->length, dir);
1644 }
1645}
1646
0fa478df
RH
1647/**
1648 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1649 * @dev: valid struct device pointer
1650 * @sg: list of buffers
1651 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1652 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1653 *
1654 * Unmap a set of streaming mode DMA translations. Again, CPU access
1655 * rules concerning calls here are the same as for dma_unmap_single().
1656 */
1657void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1658 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1659{
1660 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1661}
1662
1663/**
1664 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1665 * @dev: valid struct device pointer
1666 * @sg: list of buffers
1667 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1668 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1669 *
1670 * Unmap a set of streaming mode DMA translations. Again, CPU access
1671 * rules concerning calls here are the same as for dma_unmap_single().
1672 */
1673void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1674 enum dma_data_direction dir, struct dma_attrs *attrs)
1675{
1676 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1677}
1678
4ce63fcd
MS
1679/**
1680 * arm_iommu_sync_sg_for_cpu
1681 * @dev: valid struct device pointer
1682 * @sg: list of buffers
1683 * @nents: number of buffers to map (returned from dma_map_sg)
1684 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1685 */
1686void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1687 int nents, enum dma_data_direction dir)
1688{
1689 struct scatterlist *s;
1690 int i;
1691
1692 for_each_sg(sg, s, nents, i)
0fa478df 1693 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1694
1695}
1696
1697/**
1698 * arm_iommu_sync_sg_for_device
1699 * @dev: valid struct device pointer
1700 * @sg: list of buffers
1701 * @nents: number of buffers to map (returned from dma_map_sg)
1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1703 */
1704void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1705 int nents, enum dma_data_direction dir)
1706{
1707 struct scatterlist *s;
1708 int i;
1709
1710 for_each_sg(sg, s, nents, i)
0fa478df 1711 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1712}
1713
1714
1715/**
0fa478df 1716 * arm_coherent_iommu_map_page
4ce63fcd
MS
1717 * @dev: valid struct device pointer
1718 * @page: page that buffer resides in
1719 * @offset: offset into page for start of buffer
1720 * @size: size of buffer to map
1721 * @dir: DMA transfer direction
1722 *
0fa478df 1723 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1724 */
0fa478df 1725static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1726 unsigned long offset, size_t size, enum dma_data_direction dir,
1727 struct dma_attrs *attrs)
1728{
1729 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1730 dma_addr_t dma_addr;
13987d68 1731 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1732
4ce63fcd
MS
1733 dma_addr = __alloc_iova(mapping, len);
1734 if (dma_addr == DMA_ERROR_CODE)
1735 return dma_addr;
1736
c9b24996 1737 prot = __dma_direction_to_prot(dir);
13987d68
WD
1738
1739 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1740 if (ret < 0)
1741 goto fail;
1742
1743 return dma_addr + offset;
1744fail:
1745 __free_iova(mapping, dma_addr, len);
1746 return DMA_ERROR_CODE;
1747}
1748
0fa478df
RH
1749/**
1750 * arm_iommu_map_page
1751 * @dev: valid struct device pointer
1752 * @page: page that buffer resides in
1753 * @offset: offset into page for start of buffer
1754 * @size: size of buffer to map
1755 * @dir: DMA transfer direction
1756 *
1757 * IOMMU aware version of arm_dma_map_page()
1758 */
1759static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1760 unsigned long offset, size_t size, enum dma_data_direction dir,
1761 struct dma_attrs *attrs)
1762{
1763 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1764 __dma_page_cpu_to_dev(page, offset, size, dir);
1765
1766 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1767}
1768
1769/**
1770 * arm_coherent_iommu_unmap_page
1771 * @dev: valid struct device pointer
1772 * @handle: DMA address of buffer
1773 * @size: size of buffer (same as passed to dma_map_page)
1774 * @dir: DMA transfer direction (same as passed to dma_map_page)
1775 *
1776 * Coherent IOMMU aware version of arm_dma_unmap_page()
1777 */
1778static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1779 size_t size, enum dma_data_direction dir,
1780 struct dma_attrs *attrs)
1781{
1782 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1783 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1784 int offset = handle & ~PAGE_MASK;
1785 int len = PAGE_ALIGN(size + offset);
1786
1787 if (!iova)
1788 return;
1789
1790 iommu_unmap(mapping->domain, iova, len);
1791 __free_iova(mapping, iova, len);
1792}
1793
4ce63fcd
MS
1794/**
1795 * arm_iommu_unmap_page
1796 * @dev: valid struct device pointer
1797 * @handle: DMA address of buffer
1798 * @size: size of buffer (same as passed to dma_map_page)
1799 * @dir: DMA transfer direction (same as passed to dma_map_page)
1800 *
1801 * IOMMU aware version of arm_dma_unmap_page()
1802 */
1803static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1804 size_t size, enum dma_data_direction dir,
1805 struct dma_attrs *attrs)
1806{
1807 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1808 dma_addr_t iova = handle & PAGE_MASK;
1809 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1810 int offset = handle & ~PAGE_MASK;
1811 int len = PAGE_ALIGN(size + offset);
1812
1813 if (!iova)
1814 return;
1815
0fa478df 1816 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1817 __dma_page_dev_to_cpu(page, offset, size, dir);
1818
1819 iommu_unmap(mapping->domain, iova, len);
1820 __free_iova(mapping, iova, len);
1821}
1822
1823static void arm_iommu_sync_single_for_cpu(struct device *dev,
1824 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1825{
1826 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1827 dma_addr_t iova = handle & PAGE_MASK;
1828 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1829 unsigned int offset = handle & ~PAGE_MASK;
1830
1831 if (!iova)
1832 return;
1833
0fa478df 1834 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1835}
1836
1837static void arm_iommu_sync_single_for_device(struct device *dev,
1838 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1839{
1840 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1841 dma_addr_t iova = handle & PAGE_MASK;
1842 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1843 unsigned int offset = handle & ~PAGE_MASK;
1844
1845 if (!iova)
1846 return;
1847
1848 __dma_page_cpu_to_dev(page, offset, size, dir);
1849}
1850
1851struct dma_map_ops iommu_ops = {
1852 .alloc = arm_iommu_alloc_attrs,
1853 .free = arm_iommu_free_attrs,
1854 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1855 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1856
1857 .map_page = arm_iommu_map_page,
1858 .unmap_page = arm_iommu_unmap_page,
1859 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1860 .sync_single_for_device = arm_iommu_sync_single_for_device,
1861
1862 .map_sg = arm_iommu_map_sg,
1863 .unmap_sg = arm_iommu_unmap_sg,
1864 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1865 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
d09e1333
HD
1866
1867 .set_dma_mask = arm_dma_set_mask,
4ce63fcd
MS
1868};
1869
0fa478df
RH
1870struct dma_map_ops iommu_coherent_ops = {
1871 .alloc = arm_iommu_alloc_attrs,
1872 .free = arm_iommu_free_attrs,
1873 .mmap = arm_iommu_mmap_attrs,
1874 .get_sgtable = arm_iommu_get_sgtable,
1875
1876 .map_page = arm_coherent_iommu_map_page,
1877 .unmap_page = arm_coherent_iommu_unmap_page,
1878
1879 .map_sg = arm_coherent_iommu_map_sg,
1880 .unmap_sg = arm_coherent_iommu_unmap_sg,
d09e1333
HD
1881
1882 .set_dma_mask = arm_dma_set_mask,
0fa478df
RH
1883};
1884
4ce63fcd
MS
1885/**
1886 * arm_iommu_create_mapping
1887 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1888 * @base: start address of the valid IO address space
1889 * @size: size of the valid IO address space
1890 * @order: accuracy of the IO addresses allocations
1891 *
1892 * Creates a mapping structure which holds information about used/unused
1893 * IO address ranges, which is required to perform memory allocation and
1894 * mapping with IOMMU aware functions.
1895 *
1896 * The client device need to be attached to the mapping with
1897 * arm_iommu_attach_device function.
1898 */
1899struct dma_iommu_mapping *
1900arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1901 int order)
1902{
1903 unsigned int count = size >> (PAGE_SHIFT + order);
1904 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1905 struct dma_iommu_mapping *mapping;
1906 int err = -ENOMEM;
1907
1908 if (!count)
1909 return ERR_PTR(-EINVAL);
1910
1911 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1912 if (!mapping)
1913 goto err;
1914
1915 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1916 if (!mapping->bitmap)
1917 goto err2;
1918
1919 mapping->base = base;
1920 mapping->bits = BITS_PER_BYTE * bitmap_size;
1921 mapping->order = order;
1922 spin_lock_init(&mapping->lock);
1923
1924 mapping->domain = iommu_domain_alloc(bus);
1925 if (!mapping->domain)
1926 goto err3;
1927
1928 kref_init(&mapping->kref);
1929 return mapping;
1930err3:
1931 kfree(mapping->bitmap);
1932err2:
1933 kfree(mapping);
1934err:
1935 return ERR_PTR(err);
1936}
18177d12 1937EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
1938
1939static void release_iommu_mapping(struct kref *kref)
1940{
1941 struct dma_iommu_mapping *mapping =
1942 container_of(kref, struct dma_iommu_mapping, kref);
1943
1944 iommu_domain_free(mapping->domain);
1945 kfree(mapping->bitmap);
1946 kfree(mapping);
1947}
1948
1949void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1950{
1951 if (mapping)
1952 kref_put(&mapping->kref, release_iommu_mapping);
1953}
18177d12 1954EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd
MS
1955
1956/**
1957 * arm_iommu_attach_device
1958 * @dev: valid struct device pointer
1959 * @mapping: io address space mapping structure (returned from
1960 * arm_iommu_create_mapping)
1961 *
1962 * Attaches specified io address space mapping to the provided device,
1963 * this replaces the dma operations (dma_map_ops pointer) with the
1964 * IOMMU aware version. More than one client might be attached to
1965 * the same io address space mapping.
1966 */
1967int arm_iommu_attach_device(struct device *dev,
1968 struct dma_iommu_mapping *mapping)
1969{
1970 int err;
1971
1972 err = iommu_attach_device(mapping->domain, dev);
1973 if (err)
1974 return err;
1975
1976 kref_get(&mapping->kref);
1977 dev->archdata.mapping = mapping;
1978 set_dma_ops(dev, &iommu_ops);
1979
75c59716 1980 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
4ce63fcd
MS
1981 return 0;
1982}
18177d12 1983EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 1984
6fe36758
HD
1985/**
1986 * arm_iommu_detach_device
1987 * @dev: valid struct device pointer
1988 *
1989 * Detaches the provided device from a previously attached map.
1990 * This voids the dma operations (dma_map_ops pointer)
1991 */
1992void arm_iommu_detach_device(struct device *dev)
1993{
1994 struct dma_iommu_mapping *mapping;
1995
1996 mapping = to_dma_iommu_mapping(dev);
1997 if (!mapping) {
1998 dev_warn(dev, "Not attached\n");
1999 return;
2000 }
2001
2002 iommu_detach_device(mapping->domain, dev);
2003 kref_put(&mapping->kref, release_iommu_mapping);
9e4b259d 2004 dev->archdata.mapping = NULL;
6fe36758
HD
2005 set_dma_ops(dev, NULL);
2006
2007 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2008}
18177d12 2009EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2010
4ce63fcd 2011#endif