ARC: MMUv4 preps/1 - Fold PTE K/U access flags
[linux-2.6-block.git] / arch / arc / mm / tlb.c
CommitLineData
f1f3347d
VG
1/*
2 * TLB Management (flush/create/diagnostics) for ARC700
3 *
4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
d79e678d
VG
9 *
10 * vineetg: Aug 2011
11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue
12 *
13 * vineetg: May 2011
14 * -No need to flush_cache_page( ) for each call to update_mmu_cache()
15 * some of the LMBench tests improved amazingly
16 * = page-fault thrice as fast (75 usec to 28 usec)
17 * = mmap twice as fast (9.6 msec to 4.6 msec),
18 * = fork (5.3 msec to 3.7 msec)
19 *
20 * vineetg: April 2011 :
21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22 * helps avoid a shift when preparing PD0 from PTE
23 *
24 * vineetg: April 2011 : Preparing for MMU V3
25 * -MMU v2/v3 BCRs decoded differently
26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27 * -tlb_entry_erase( ) can be void
28 * -local_flush_tlb_range( ):
29 * = need not "ceil" @end
30 * = walks MMU only if range spans < 32 entries, as opposed to 256
31 *
32 * Vineetg: Sept 10th 2008
33 * -Changes related to MMU v2 (Rel 4.8)
34 *
35 * Vineetg: Aug 29th 2008
36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38 * it fails. Thus need to load it with ANY valid value before invoking
39 * TLBIVUTLB cmd
40 *
41 * Vineetg: Aug 21th 2008:
42 * -Reduced the duration of IRQ lockouts in TLB Flush routines
43 * -Multiple copies of TLB erase code seperated into a "single" function
44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45 * in interrupt-safe region.
46 *
47 * Vineetg: April 23rd Bug #93131
48 * Problem: tlb_flush_kernel_range() doesnt do anything if the range to
49 * flush is more than the size of TLB itself.
50 *
51 * Rahul Trivedi : Codito Technologies 2004
f1f3347d
VG
52 */
53
54#include <linux/module.h>
55#include <asm/arcregs.h>
d79e678d 56#include <asm/setup.h>
f1f3347d 57#include <asm/mmu_context.h>
da1677b0 58#include <asm/mmu.h>
f1f3347d 59
d79e678d
VG
60/* Need for ARC MMU v2
61 *
62 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
63 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
64 * map into same set, there would be contention for the 2 ways causing severe
65 * Thrashing.
66 *
67 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
68 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
69 * Given this, the thrasing problem should never happen because once the 3
70 * J-TLB entries are created (even though 3rd will knock out one of the prev
71 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
72 *
73 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
74 * This is a simple design for keeping them in sync. So what do we do?
75 * The solution which James came up was pretty neat. It utilised the assoc
76 * of uTLBs by not invalidating always but only when absolutely necessary.
77 *
78 * - Existing TLB commands work as before
79 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
80 * - New command (TLBIVUTLB) to invalidate uTLBs.
81 *
82 * The uTLBs need only be invalidated when pages are being removed from the
83 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
84 * as a result of a miss, the removed entry is still allowed to exist in the
85 * uTLBs as it is still valid and present in the OS page table. This allows the
86 * full associativity of the uTLBs to hide the limited associativity of the main
87 * TLB.
88 *
89 * During a miss handler, the new "TLBWriteNI" command is used to load
90 * entries without clearing the uTLBs.
91 *
92 * When the OS page table is updated, TLB entries that may be associated with a
93 * removed page are removed (flushed) from the TLB using TLBWrite. In this
94 * circumstance, the uTLBs must also be cleared. This is done by using the
95 * existing TLBWrite command. An explicit IVUTLB is also required for those
96 * corner cases when TLBWrite was not executed at all because the corresp
97 * J-TLB entry got evicted/replaced.
98 */
99
da1677b0 100
f1f3347d
VG
101/* A copy of the ASID from the PID reg is kept in asid_cache */
102int asid_cache = FIRST_ASID;
103
104/* ASID to mm struct mapping. We have one extra entry corresponding to
105 * NO_ASID to save us a compare when clearing the mm entry for old asid
106 * see get_new_mmu_context (asm-arc/mmu_context.h)
107 */
108struct mm_struct *asid_mm_map[NUM_ASID + 1];
cc562d2e 109
d79e678d
VG
110/*
111 * Utility Routine to erase a J-TLB entry
112 * The procedure is to look it up in the MMU. If found, ERASE it by
113 * issuing a TlbWrite CMD with PD0 = PD1 = 0
114 */
115
116static void __tlb_entry_erase(void)
117{
118 write_aux_reg(ARC_REG_TLBPD1, 0);
119 write_aux_reg(ARC_REG_TLBPD0, 0);
120 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
121}
122
123static void tlb_entry_erase(unsigned int vaddr_n_asid)
124{
125 unsigned int idx;
126
127 /* Locate the TLB entry for this vaddr + ASID */
128 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
129 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
130 idx = read_aux_reg(ARC_REG_TLBINDEX);
131
132 /* No error means entry found, zero it out */
133 if (likely(!(idx & TLB_LKUP_ERR))) {
134 __tlb_entry_erase();
135 } else { /* Some sort of Error */
136
137 /* Duplicate entry error */
138 if (idx & 0x1) {
139 /* TODO we need to handle this case too */
140 pr_emerg("unhandled Duplicate flush for %x\n",
141 vaddr_n_asid);
142 }
143 /* else entry not found so nothing to do */
144 }
145}
146
147/****************************************************************************
148 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
149 *
150 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
151 *
152 * utlb_invalidate ( )
153 * -For v2 MMU calls Flush uTLB Cmd
154 * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
155 * This is because in v1 TLBWrite itself invalidate uTLBs
156 ***************************************************************************/
157
158static void utlb_invalidate(void)
159{
160#if (CONFIG_ARC_MMU_VER >= 2)
161
162#if (CONFIG_ARC_MMU_VER < 3)
163 /* MMU v2 introduced the uTLB Flush command.
164 * There was however an obscure hardware bug, where uTLB flush would
165 * fail when a prior probe for J-TLB (both totally unrelated) would
166 * return lkup err - because the entry didnt exist in MMU.
167 * The Workround was to set Index reg with some valid value, prior to
168 * flush. This was fixed in MMU v3 hence not needed any more
169 */
170 unsigned int idx;
171
172 /* make sure INDEX Reg is valid */
173 idx = read_aux_reg(ARC_REG_TLBINDEX);
174
175 /* If not write some dummy val */
176 if (unlikely(idx & TLB_LKUP_ERR))
177 write_aux_reg(ARC_REG_TLBINDEX, 0xa);
178#endif
179
180 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
181#endif
182
183}
184
185/*
186 * Un-conditionally (without lookup) erase the entire MMU contents
187 */
188
189noinline void local_flush_tlb_all(void)
190{
191 unsigned long flags;
192 unsigned int entry;
193 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
194
195 local_irq_save(flags);
196
197 /* Load PD0 and PD1 with template for a Blank Entry */
198 write_aux_reg(ARC_REG_TLBPD1, 0);
199 write_aux_reg(ARC_REG_TLBPD0, 0);
200
201 for (entry = 0; entry < mmu->num_tlb; entry++) {
202 /* write this entry to the TLB */
203 write_aux_reg(ARC_REG_TLBINDEX, entry);
204 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
205 }
206
207 utlb_invalidate();
208
209 local_irq_restore(flags);
210}
211
212/*
213 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
214 */
215noinline void local_flush_tlb_mm(struct mm_struct *mm)
216{
217 /*
218 * Small optimisation courtesy IA64
219 * flush_mm called during fork,exit,munmap etc, multiple times as well.
220 * Only for fork( ) do we need to move parent to a new MMU ctxt,
221 * all other cases are NOPs, hence this check.
222 */
223 if (atomic_read(&mm->mm_users) == 0)
224 return;
225
226 /*
227 * Workaround for Android weirdism:
228 * A binder VMA could end up in a task such that vma->mm != tsk->mm
229 * old code would cause h/w - s/w ASID to get out of sync
230 */
231 if (current->mm != mm)
232 destroy_context(mm);
233 else
234 get_new_mmu_context(mm);
235}
236
237/*
238 * Flush a Range of TLB entries for userland.
239 * @start is inclusive, while @end is exclusive
240 * Difference between this and Kernel Range Flush is
241 * -Here the fastest way (if range is too large) is to move to next ASID
242 * without doing any explicit Shootdown
243 * -In case of kernel Flush, entry has to be shot down explictly
244 */
245void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
246 unsigned long end)
247{
248 unsigned long flags;
249 unsigned int asid;
250
251 /* If range @start to @end is more than 32 TLB entries deep,
252 * its better to move to a new ASID rather than searching for
253 * individual entries and then shooting them down
254 *
255 * The calc above is rough, doesn't account for unaligned parts,
256 * since this is heuristics based anyways
257 */
258 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
259 local_flush_tlb_mm(vma->vm_mm);
260 return;
261 }
262
263 /*
264 * @start moved to page start: this alone suffices for checking
265 * loop end condition below, w/o need for aligning @end to end
266 * e.g. 2000 to 4001 will anyhow loop twice
267 */
268 start &= PAGE_MASK;
269
270 local_irq_save(flags);
271 asid = vma->vm_mm->context.asid;
272
273 if (asid != NO_ASID) {
274 while (start < end) {
275 tlb_entry_erase(start | (asid & 0xff));
276 start += PAGE_SIZE;
277 }
278 }
279
280 utlb_invalidate();
281
282 local_irq_restore(flags);
283}
284
285/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
286 * @start, @end interpreted as kvaddr
287 * Interestingly, shared TLB entries can also be flushed using just
288 * @start,@end alone (interpreted as user vaddr), although technically SASID
289 * is also needed. However our smart TLbProbe lookup takes care of that.
290 */
291void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
292{
293 unsigned long flags;
294
295 /* exactly same as above, except for TLB entry not taking ASID */
296
297 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
298 local_flush_tlb_all();
299 return;
300 }
301
302 start &= PAGE_MASK;
303
304 local_irq_save(flags);
305 while (start < end) {
306 tlb_entry_erase(start);
307 start += PAGE_SIZE;
308 }
309
310 utlb_invalidate();
311
312 local_irq_restore(flags);
313}
314
315/*
316 * Delete TLB entry in MMU for a given page (??? address)
317 * NOTE One TLB entry contains translation for single PAGE
318 */
319
320void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
321{
322 unsigned long flags;
323
324 /* Note that it is critical that interrupts are DISABLED between
325 * checking the ASID and using it flush the TLB entry
326 */
327 local_irq_save(flags);
328
329 if (vma->vm_mm->context.asid != NO_ASID) {
330 tlb_entry_erase((page & PAGE_MASK) |
331 (vma->vm_mm->context.asid & 0xff));
332 utlb_invalidate();
333 }
334
335 local_irq_restore(flags);
336}
cc562d2e
VG
337
338/*
339 * Routine to create a TLB entry
340 */
341void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
342{
343 unsigned long flags;
64b703ef 344 unsigned int idx, asid_or_sasid, rwx;
cc562d2e
VG
345 unsigned long pd0_flags;
346
347 /*
348 * create_tlb() assumes that current->mm == vma->mm, since
349 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
350 * -completes the lazy write to SASID reg (again valid for curr tsk)
351 *
352 * Removing the assumption involves
353 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
354 * -Fix the TLB paranoid debug code to not trigger false negatives.
355 * -More importantly it makes this handler inconsistent with fast-path
356 * TLB Refill handler which always deals with "current"
357 *
358 * Lets see the use cases when current->mm != vma->mm and we land here
359 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
360 * Here VM wants to pre-install a TLB entry for user stack while
361 * current->mm still points to pre-execve mm (hence the condition).
362 * However the stack vaddr is soon relocated (randomization) and
363 * move_page_tables() tries to undo that TLB entry.
364 * Thus not creating TLB entry is not any worse.
365 *
366 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
367 * breakpoint in debugged task. Not creating a TLB now is not
368 * performance critical.
369 *
370 * Both the cases above are not good enough for code churn.
371 */
372 if (current->active_mm != vma->vm_mm)
373 return;
374
375 local_irq_save(flags);
376
377 tlb_paranoid_check(vma->vm_mm->context.asid, address);
378
379 address &= PAGE_MASK;
380
381 /* update this PTE credentials */
382 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
383
384 /* Create HW TLB entry Flags (in PD0) from PTE Flags */
385#if (CONFIG_ARC_MMU_VER <= 2)
386 pd0_flags = ((pte_val(*ptep) & PTE_BITS_IN_PD0) >> 1);
387#else
388 pd0_flags = ((pte_val(*ptep) & PTE_BITS_IN_PD0));
389#endif
390
391 /* ASID for this task */
392 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
393
394 write_aux_reg(ARC_REG_TLBPD0, address | pd0_flags | asid_or_sasid);
395
64b703ef
VG
396 /*
397 * ARC MMU provides fully orthogonal access bits for K/U mode,
398 * however Linux only saves 1 set to save PTE real-estate
399 * Here we convert 3 PTE bits into 6 MMU bits:
400 * -Kernel only entries have Kr Kw Kx 0 0 0
401 * -User entries have mirrored K and U bits
402 */
403 rwx = pte_val(*ptep) & PTE_BITS_RWX;
404
405 if (pte_val(*ptep) & _PAGE_GLOBAL)
406 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
407 else
408 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
409
cc562d2e 410 /* Load remaining info in PD1 (Page Frame Addr and Kx/Kw/Kr Flags) */
64b703ef
VG
411 write_aux_reg(ARC_REG_TLBPD1,
412 rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1));
cc562d2e
VG
413
414 /* First verify if entry for this vaddr+ASID already exists */
415 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
416 idx = read_aux_reg(ARC_REG_TLBINDEX);
417
418 /*
419 * If Not already present get a free slot from MMU.
420 * Otherwise, Probe would have located the entry and set INDEX Reg
421 * with existing location. This will cause Write CMD to over-write
422 * existing entry with new PD0 and PD1
423 */
424 if (likely(idx & TLB_LKUP_ERR))
425 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
426
427 /*
428 * Commit the Entry to MMU
429 * It doesnt sound safe to use the TLBWriteNI cmd here
430 * which doesn't flush uTLBs. I'd rather be safe than sorry.
431 */
432 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
433
434 local_irq_restore(flags);
435}
436
eacd0e95
VG
437/*
438 * Called at the end of pagefault, for a userspace mapped page
439 * -pre-install the corresponding TLB entry into MMU
4102b533
VG
440 * -Finalize the delayed D-cache flush of kernel mapping of page due to
441 * flush_dcache_page(), copy_user_page()
442 *
443 * Note that flush (when done) involves both WBACK - so physical page is
444 * in sync as well as INV - so any non-congruent aliases don't remain
cc562d2e 445 */
24603fdd 446void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
cc562d2e
VG
447 pte_t *ptep)
448{
24603fdd 449 unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
4102b533 450 unsigned long paddr = pte_val(*ptep) & PAGE_MASK;
29b93c68 451 struct page *page = pfn_to_page(pte_pfn(*ptep));
24603fdd
VG
452
453 create_tlb(vma, vaddr, ptep);
cc562d2e 454
29b93c68
VG
455 if (page == ZERO_PAGE(0)) {
456 return;
457 }
458
4102b533
VG
459 /*
460 * Exec page : Independent of aliasing/page-color considerations,
461 * since icache doesn't snoop dcache on ARC, any dirty
462 * K-mapping of a code page needs to be wback+inv so that
463 * icache fetch by userspace sees code correctly.
464 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
465 * so userspace sees the right data.
466 * (Avoids the flush for Non-exec + congruent mapping case)
467 */
3e87974d
VG
468 if ((vma->vm_flags & VM_EXEC) ||
469 addr_not_cache_congruent(paddr, vaddr)) {
eacd0e95 470
2ed21dae 471 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
eacd0e95 472 if (dirty) {
4102b533 473 /* wback + inv dcache lines */
6ec18a81 474 __flush_dcache_page(paddr, paddr);
4102b533
VG
475
476 /* invalidate any existing icache lines */
477 if (vma->vm_flags & VM_EXEC)
478 __inv_icache_page(paddr, vaddr);
eacd0e95 479 }
24603fdd 480 }
cc562d2e
VG
481}
482
483/* Read the Cache Build Confuration Registers, Decode them and save into
484 * the cpuinfo structure for later use.
485 * No Validation is done here, simply read/convert the BCRs
486 */
ce759956 487void read_decode_mmu_bcr(void)
cc562d2e 488{
cc562d2e 489 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
da1677b0
VG
490 unsigned int tmp;
491 struct bcr_mmu_1_2 {
492#ifdef CONFIG_CPU_BIG_ENDIAN
493 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
494#else
495 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
496#endif
497 } *mmu2;
498
499 struct bcr_mmu_3 {
500#ifdef CONFIG_CPU_BIG_ENDIAN
501 unsigned int ver:8, ways:4, sets:4, osm:1, reserv:3, pg_sz:4,
502 u_itlb:4, u_dtlb:4;
503#else
504 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, reserv:3, osm:1, sets:4,
505 ways:4, ver:8;
506#endif
507 } *mmu3;
cc562d2e
VG
508
509 tmp = read_aux_reg(ARC_REG_MMU_BCR);
510 mmu->ver = (tmp >> 24);
511
512 if (mmu->ver <= 2) {
513 mmu2 = (struct bcr_mmu_1_2 *)&tmp;
514 mmu->pg_sz = PAGE_SIZE;
515 mmu->sets = 1 << mmu2->sets;
516 mmu->ways = 1 << mmu2->ways;
517 mmu->u_dtlb = mmu2->u_dtlb;
518 mmu->u_itlb = mmu2->u_itlb;
519 } else {
520 mmu3 = (struct bcr_mmu_3 *)&tmp;
521 mmu->pg_sz = 512 << mmu3->pg_sz;
522 mmu->sets = 1 << mmu3->sets;
523 mmu->ways = 1 << mmu3->ways;
524 mmu->u_dtlb = mmu3->u_dtlb;
525 mmu->u_itlb = mmu3->u_itlb;
526 }
527
528 mmu->num_tlb = mmu->sets * mmu->ways;
529}
530
af617428
VG
531char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
532{
533 int n = 0;
e3edeb67 534 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
af617428
VG
535
536 n += scnprintf(buf + n, len - n, "ARC700 MMU [v%x]\t: %dk PAGE, ",
537 p_mmu->ver, TO_KB(p_mmu->pg_sz));
538
539 n += scnprintf(buf + n, len - n,
540 "J-TLB %d (%dx%d), uDTLB %d, uITLB %d, %s\n",
541 p_mmu->num_tlb, p_mmu->sets, p_mmu->ways,
542 p_mmu->u_dtlb, p_mmu->u_itlb,
8235703e 543 IS_ENABLED(CONFIG_ARC_MMU_SASID) ? "SASID" : "");
af617428
VG
544
545 return buf;
546}
547
ce759956 548void arc_mmu_init(void)
cc562d2e 549{
af617428
VG
550 char str[256];
551 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
552
553 printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
554
555 /* For efficiency sake, kernel is compile time built for a MMU ver
556 * This must match the hardware it is running on.
557 * Linux built for MMU V2, if run on MMU V1 will break down because V1
558 * hardware doesn't understand cmds such as WriteNI, or IVUTLB
559 * On the other hand, Linux built for V1 if run on MMU V2 will do
560 * un-needed workarounds to prevent memcpy thrashing.
561 * Similarly MMU V3 has new features which won't work on older MMU
562 */
563 if (mmu->ver != CONFIG_ARC_MMU_VER) {
564 panic("MMU ver %d doesn't match kernel built for %d...\n",
565 mmu->ver, CONFIG_ARC_MMU_VER);
566 }
567
568 if (mmu->pg_sz != PAGE_SIZE)
569 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
570
cc562d2e
VG
571 /*
572 * ASID mgmt data structures are compile time init
573 * asid_cache = FIRST_ASID and asid_mm_map[] all zeroes
574 */
575
576 local_flush_tlb_all();
577
578 /* Enable the MMU */
579 write_aux_reg(ARC_REG_PID, MMU_ENABLE);
41195d23
VG
580
581 /* In smp we use this reg for interrupt 1 scratch */
582#ifndef CONFIG_SMP
583 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
584 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
585#endif
cc562d2e
VG
586}
587
588/*
589 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
590 * The mapping is Column-first.
591 * --------------------- -----------
592 * |way0|way1|way2|way3| |way0|way1|
593 * --------------------- -----------
594 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
595 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
596 * ~ ~ ~ ~
597 * [set127] | 508| 509| 510| 511| | 254| 255|
598 * --------------------- -----------
599 * For normal operations we don't(must not) care how above works since
600 * MMU cmd getIndex(vaddr) abstracts that out.
601 * However for walking WAYS of a SET, we need to know this
602 */
603#define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
604
605/* Handling of Duplicate PD (TLB entry) in MMU.
606 * -Could be due to buggy customer tapeouts or obscure kernel bugs
607 * -MMU complaints not at the time of duplicate PD installation, but at the
608 * time of lookup matching multiple ways.
609 * -Ideally these should never happen - but if they do - workaround by deleting
610 * the duplicate one.
611 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
612 */
613volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */
614
615void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
616 struct pt_regs *regs)
617{
618 int set, way, n;
619 unsigned int pd0[4], pd1[4]; /* assume max 4 ways */
620 unsigned long flags, is_valid;
621 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
622
623 local_irq_save(flags);
624
625 /* re-enable the MMU */
626 write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID));
627
628 /* loop thru all sets of TLB */
629 for (set = 0; set < mmu->sets; set++) {
630
631 /* read out all the ways of current set */
632 for (way = 0, is_valid = 0; way < mmu->ways; way++) {
633 write_aux_reg(ARC_REG_TLBINDEX,
634 SET_WAY_TO_IDX(mmu, set, way));
635 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
636 pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
637 pd1[way] = read_aux_reg(ARC_REG_TLBPD1);
638 is_valid |= pd0[way] & _PAGE_PRESENT;
639 }
640
641 /* If all the WAYS in SET are empty, skip to next SET */
642 if (!is_valid)
643 continue;
644
645 /* Scan the set for duplicate ways: needs a nested loop */
646 for (way = 0; way < mmu->ways; way++) {
647 if (!pd0[way])
648 continue;
649
650 for (n = way + 1; n < mmu->ways; n++) {
651 if ((pd0[way] & PAGE_MASK) ==
652 (pd0[n] & PAGE_MASK)) {
653
654 if (dup_pd_verbose) {
655 pr_info("Duplicate PD's @"
656 "[%d:%d]/[%d:%d]\n",
657 set, way, set, n);
658 pr_info("TLBPD0[%u]: %08x\n",
659 way, pd0[way]);
660 }
661
662 /*
663 * clear entry @way and not @n. This is
664 * critical to our optimised loop
665 */
666 pd0[way] = pd1[way] = 0;
667 write_aux_reg(ARC_REG_TLBINDEX,
668 SET_WAY_TO_IDX(mmu, set, way));
669 __tlb_entry_erase();
670 }
671 }
672 }
673 }
674
675 local_irq_restore(flags);
676}
677
678/***********************************************************************
679 * Diagnostic Routines
680 * -Called from Low Level TLB Hanlders if things don;t look good
681 **********************************************************************/
682
683#ifdef CONFIG_ARC_DBG_TLB_PARANOIA
684
685/*
686 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
687 * don't match
688 */
689void print_asid_mismatch(int is_fast_path)
690{
691 int pid_sw, pid_hw;
692 pid_sw = current->active_mm->context.asid;
693 pid_hw = read_aux_reg(ARC_REG_PID) & 0xff;
694
695 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
696 is_fast_path ? "Fast" : "Slow", pid_sw, pid_hw);
697
698 __asm__ __volatile__("flag 1");
699}
700
701void tlb_paranoid_check(unsigned int pid_sw, unsigned long addr)
702{
703 unsigned int pid_hw;
704
705 pid_hw = read_aux_reg(ARC_REG_PID) & 0xff;
706
707 if (addr < 0x70000000 && ((pid_hw != pid_sw) || (pid_sw == NO_ASID)))
708 print_asid_mismatch(0);
709}
710#endif