clocksource: Use a plain u64 instead of cycle_t
[linux-2.6-block.git] / arch / alpha / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/alpha/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
5 *
85d0b3a5 6 * This file contains the clocksource time handling.
1da177e4
LT
7 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
8 * "A Kernel Model for Precision Timekeeping" by Dave Mills
9 * 1997-01-09 Adrian Sun
10 * use interval timer if CONFIG_RTC=y
11 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
12 * fixed tick loss calculation in timer_interrupt
13 * (round system clock to nearest tick instead of truncating)
14 * fixed algorithm in time_init for getting time from CMOS clock
15 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
16 * fixed algorithm in do_gettimeofday() for calculating the precise time
17 * from processor cycle counter (now taking lost_ticks into account)
1da177e4
LT
18 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
19 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
20 */
1da177e4
LT
21#include <linux/errno.h>
22#include <linux/module.h>
23#include <linux/sched.h>
24#include <linux/kernel.h>
25#include <linux/param.h>
26#include <linux/string.h>
27#include <linux/mm.h>
28#include <linux/delay.h>
29#include <linux/ioport.h>
30#include <linux/irq.h>
31#include <linux/interrupt.h>
32#include <linux/init.h>
33#include <linux/bcd.h>
34#include <linux/profile.h>
e360adbe 35#include <linux/irq_work.h>
1da177e4 36
7c0f6ba6 37#include <linux/uaccess.h>
1da177e4
LT
38#include <asm/io.h>
39#include <asm/hwrpb.h>
1da177e4
LT
40
41#include <linux/mc146818rtc.h>
42#include <linux/time.h>
43#include <linux/timex.h>
9ce34c8f 44#include <linux/clocksource.h>
a1659d6d 45#include <linux/clockchips.h>
1da177e4
LT
46
47#include "proto.h"
48#include "irq_impl.h"
49
1da177e4 50DEFINE_SPINLOCK(rtc_lock);
cff52daf 51EXPORT_SYMBOL(rtc_lock);
1da177e4 52
1da177e4
LT
53unsigned long est_cycle_freq;
54
e360adbe 55#ifdef CONFIG_IRQ_WORK
979f8671 56
e360adbe 57DEFINE_PER_CPU(u8, irq_work_pending);
979f8671 58
2999a4b3
CL
59#define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
60#define test_irq_work_pending() __this_cpu_read(irq_work_pending)
61#define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
979f8671 62
0f933625 63void arch_irq_work_raise(void)
979f8671 64{
e360adbe 65 set_irq_work_pending_flag();
979f8671
MC
66}
67
e360adbe 68#else /* CONFIG_IRQ_WORK */
979f8671 69
e360adbe
PZ
70#define test_irq_work_pending() 0
71#define clear_irq_work_pending()
979f8671 72
e360adbe 73#endif /* CONFIG_IRQ_WORK */
979f8671 74
1da177e4
LT
75
76static inline __u32 rpcc(void)
77{
91531b05 78 return __builtin_alpha_rpcc();
1da177e4
LT
79}
80
a1659d6d
RH
81
82\f
1da177e4 83/*
a1659d6d 84 * The RTC as a clock_event_device primitive.
1da177e4 85 */
1da177e4 86
a1659d6d 87static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
1da177e4 88
a1659d6d 89irqreturn_t
4914d7b4 90rtc_timer_interrupt(int irq, void *dev)
a1659d6d
RH
91{
92 int cpu = smp_processor_id();
93 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
1da177e4 94
a1659d6d 95 /* Don't run the hook for UNUSED or SHUTDOWN. */
6ec81932 96 if (likely(clockevent_state_periodic(ce)))
a1659d6d 97 ce->event_handler(ce);
aa02cd2d 98
e360adbe
PZ
99 if (test_irq_work_pending()) {
100 clear_irq_work_pending();
101 irq_work_run();
979f8671
MC
102 }
103
1da177e4
LT
104 return IRQ_HANDLED;
105}
106
a1659d6d
RH
107static int
108rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
109{
110 /* This hook is for oneshot mode, which we don't support. */
111 return -EINVAL;
112}
113
4914d7b4
RH
114static void __init
115init_rtc_clockevent(void)
a1659d6d
RH
116{
117 int cpu = smp_processor_id();
118 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
119
120 *ce = (struct clock_event_device){
121 .name = "rtc",
122 .features = CLOCK_EVT_FEAT_PERIODIC,
123 .rating = 100,
124 .cpumask = cpumask_of(cpu),
a1659d6d
RH
125 .set_next_event = rtc_ce_set_next_event,
126 };
127
128 clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
129}
130
4914d7b4
RH
131\f
132/*
133 * The QEMU clock as a clocksource primitive.
134 */
135
a5a1d1c2 136static u64
4914d7b4
RH
137qemu_cs_read(struct clocksource *cs)
138{
139 return qemu_get_vmtime();
140}
141
142static struct clocksource qemu_cs = {
143 .name = "qemu",
144 .rating = 400,
145 .read = qemu_cs_read,
146 .mask = CLOCKSOURCE_MASK(64),
147 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
148 .max_idle_ns = LONG_MAX
149};
150
151
152/*
153 * The QEMU alarm as a clock_event_device primitive.
154 */
155
6ec81932 156static int qemu_ce_shutdown(struct clock_event_device *ce)
4914d7b4
RH
157{
158 /* The mode member of CE is updated for us in generic code.
159 Just make sure that the event is disabled. */
160 qemu_set_alarm_abs(0);
6ec81932 161 return 0;
4914d7b4
RH
162}
163
164static int
165qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
166{
167 qemu_set_alarm_rel(evt);
168 return 0;
169}
170
171static irqreturn_t
172qemu_timer_interrupt(int irq, void *dev)
173{
174 int cpu = smp_processor_id();
175 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
176
177 ce->event_handler(ce);
178 return IRQ_HANDLED;
179}
180
181static void __init
182init_qemu_clockevent(void)
183{
184 int cpu = smp_processor_id();
185 struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
186
187 *ce = (struct clock_event_device){
188 .name = "qemu",
189 .features = CLOCK_EVT_FEAT_ONESHOT,
190 .rating = 400,
191 .cpumask = cpumask_of(cpu),
6ec81932
VK
192 .set_state_shutdown = qemu_ce_shutdown,
193 .set_state_oneshot = qemu_ce_shutdown,
194 .tick_resume = qemu_ce_shutdown,
4914d7b4
RH
195 .set_next_event = qemu_ce_set_next_event,
196 };
197
198 clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
199}
200
201\f
ebaf4fc1 202void __init
1da177e4
LT
203common_init_rtc(void)
204{
fddd87d6 205 unsigned char x, sel = 0;
1da177e4
LT
206
207 /* Reset periodic interrupt frequency. */
fddd87d6
RH
208#if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
209 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
210 /* Test includes known working values on various platforms
211 where 0x26 is wrong; we refuse to change those. */
212 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
213 sel = RTC_REF_CLCK_32KHZ + 6;
1da177e4 214 }
fddd87d6
RH
215#elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
216 sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
217#else
218# error "Unknown HZ from arch/alpha/Kconfig"
219#endif
220 if (sel) {
221 printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
222 CONFIG_HZ, sel);
223 CMOS_WRITE(sel, RTC_FREQ_SELECT);
224 }
1da177e4
LT
225
226 /* Turn on periodic interrupts. */
227 x = CMOS_READ(RTC_CONTROL);
228 if (!(x & RTC_PIE)) {
229 printk("Turning on RTC interrupts.\n");
230 x |= RTC_PIE;
231 x &= ~(RTC_AIE | RTC_UIE);
232 CMOS_WRITE(x, RTC_CONTROL);
233 }
234 (void) CMOS_READ(RTC_INTR_FLAGS);
235
236 outb(0x36, 0x43); /* pit counter 0: system timer */
237 outb(0x00, 0x40);
238 outb(0x00, 0x40);
239
240 outb(0xb6, 0x43); /* pit counter 2: speaker */
241 outb(0x31, 0x42);
242 outb(0x13, 0x42);
243
244 init_rtc_irq();
245}
246
db2d3260
RH
247\f
248#ifndef CONFIG_ALPHA_WTINT
249/*
250 * The RPCC as a clocksource primitive.
251 *
252 * While we have free-running timecounters running on all CPUs, and we make
253 * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
254 * with the wall clock, that initialization isn't kept up-to-date across
255 * different time counters in SMP mode. Therefore we can only use this
256 * method when there's only one CPU enabled.
257 *
258 * When using the WTINT PALcall, the RPCC may shift to a lower frequency,
259 * or stop altogether, while waiting for the interrupt. Therefore we cannot
260 * use this method when WTINT is in use.
261 */
262
a5a1d1c2 263static u64 read_rpcc(struct clocksource *cs)
db2d3260
RH
264{
265 return rpcc();
266}
267
268static struct clocksource clocksource_rpcc = {
269 .name = "rpcc",
270 .rating = 300,
271 .read = read_rpcc,
272 .mask = CLOCKSOURCE_MASK(32),
273 .flags = CLOCK_SOURCE_IS_CONTINUOUS
274};
275#endif /* ALPHA_WTINT */
276
277\f
1da177e4
LT
278/* Validate a computed cycle counter result against the known bounds for
279 the given processor core. There's too much brokenness in the way of
280 timing hardware for any one method to work everywhere. :-(
281
282 Return 0 if the result cannot be trusted, otherwise return the argument. */
283
284static unsigned long __init
285validate_cc_value(unsigned long cc)
286{
287 static struct bounds {
288 unsigned int min, max;
289 } cpu_hz[] __initdata = {
290 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
291 [EV4_CPU] = { 100000000, 300000000 },
292 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
293 [EV45_CPU] = { 200000000, 300000000 },
294 [EV5_CPU] = { 250000000, 433000000 },
295 [EV56_CPU] = { 333000000, 667000000 },
296 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
297 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
298 [EV6_CPU] = { 466000000, 600000000 },
299 [EV67_CPU] = { 600000000, 750000000 },
300 [EV68AL_CPU] = { 750000000, 940000000 },
301 [EV68CB_CPU] = { 1000000000, 1333333333 },
302 /* None of the following are shipping as of 2001-11-01. */
303 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
304 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
305 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
306 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
307 };
308
309 /* Allow for some drift in the crystal. 10MHz is more than enough. */
310 const unsigned int deviation = 10000000;
311
312 struct percpu_struct *cpu;
313 unsigned int index;
314
315 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
316 index = cpu->type & 0xffffffff;
317
318 /* If index out of bounds, no way to validate. */
25c8716c 319 if (index >= ARRAY_SIZE(cpu_hz))
1da177e4
LT
320 return cc;
321
322 /* If index contains no data, no way to validate. */
323 if (cpu_hz[index].max == 0)
324 return cc;
325
326 if (cc < cpu_hz[index].min - deviation
327 || cc > cpu_hz[index].max + deviation)
328 return 0;
329
330 return cc;
331}
332
333
334/*
335 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
336 * arch/i386/time.c.
337 */
338
339#define CALIBRATE_LATCH 0xffff
340#define TIMEOUT_COUNT 0x100000
341
342static unsigned long __init
343calibrate_cc_with_pit(void)
344{
345 int cc, count = 0;
346
347 /* Set the Gate high, disable speaker */
348 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
349
350 /*
351 * Now let's take care of CTC channel 2
352 *
353 * Set the Gate high, program CTC channel 2 for mode 0,
354 * (interrupt on terminal count mode), binary count,
355 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
356 */
357 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
358 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
359 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
360
361 cc = rpcc();
362 do {
363 count++;
364 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
365 cc = rpcc() - cc;
366
367 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
368 if (count <= 1 || count == TIMEOUT_COUNT)
369 return 0;
370
371 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
372}
373
374/* The Linux interpretation of the CMOS clock register contents:
375 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
376 RTC registers show the second which has precisely just started.
377 Let's hope other operating systems interpret the RTC the same way. */
378
379static unsigned long __init
380rpcc_after_update_in_progress(void)
381{
382 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
383 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
384
385 return rpcc();
386}
387
388void __init
389time_init(void)
390{
1e871be1 391 unsigned int cc1, cc2;
1da177e4
LT
392 unsigned long cycle_freq, tolerance;
393 long diff;
394
4914d7b4
RH
395 if (alpha_using_qemu) {
396 clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
397 init_qemu_clockevent();
398
399 timer_irqaction.handler = qemu_timer_interrupt;
400 init_rtc_irq();
401 return;
402 }
403
1da177e4
LT
404 /* Calibrate CPU clock -- attempt #1. */
405 if (!est_cycle_freq)
406 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
407
4c2e6f6a 408 cc1 = rpcc();
1da177e4
LT
409
410 /* Calibrate CPU clock -- attempt #2. */
411 if (!est_cycle_freq) {
4c2e6f6a 412 cc1 = rpcc_after_update_in_progress();
1da177e4
LT
413 cc2 = rpcc_after_update_in_progress();
414 est_cycle_freq = validate_cc_value(cc2 - cc1);
415 cc1 = cc2;
416 }
417
418 cycle_freq = hwrpb->cycle_freq;
419 if (est_cycle_freq) {
420 /* If the given value is within 250 PPM of what we calculated,
421 accept it. Otherwise, use what we found. */
422 tolerance = cycle_freq / 4000;
423 diff = cycle_freq - est_cycle_freq;
424 if (diff < 0)
425 diff = -diff;
426 if ((unsigned long)diff > tolerance) {
427 cycle_freq = est_cycle_freq;
428 printk("HWRPB cycle frequency bogus. "
429 "Estimated %lu Hz\n", cycle_freq);
430 } else {
431 est_cycle_freq = 0;
432 }
433 } else if (! validate_cc_value (cycle_freq)) {
434 printk("HWRPB cycle frequency bogus, "
435 "and unable to estimate a proper value!\n");
436 }
437
db2d3260
RH
438 /* See above for restrictions on using clocksource_rpcc. */
439#ifndef CONFIG_ALPHA_WTINT
440 if (hwrpb->nr_processors == 1)
441 clocksource_register_hz(&clocksource_rpcc, cycle_freq);
442#endif
443
1da177e4
LT
444 /* Startup the timer source. */
445 alpha_mv.init_rtc();
4914d7b4
RH
446 init_rtc_clockevent();
447}
a1659d6d 448
4914d7b4
RH
449/* Initialize the clock_event_device for secondary cpus. */
450#ifdef CONFIG_SMP
451void __init
452init_clockevent(void)
453{
454 if (alpha_using_qemu)
455 init_qemu_clockevent();
456 else
457 init_rtc_clockevent();
1da177e4 458}
4914d7b4 459#endif