ALSA: memalloc: Allow NULL device for SNDRV_DMA_TYPE_CONTINUOUS type
[linux-2.6-block.git] / Documentation / sound / kernel-api / writing-an-alsa-driver.rst
CommitLineData
7ddedebb
TI
1======================
2Writing an ALSA Driver
3======================
4
5:Author: Takashi Iwai <tiwai@suse.de>
7ddedebb
TI
6
7Preface
8=======
9
10This document describes how to write an `ALSA (Advanced Linux Sound
11Architecture) <http://www.alsa-project.org/>`__ driver. The document
12focuses mainly on PCI soundcards. In the case of other device types, the
13API might be different, too. However, at least the ALSA kernel API is
14consistent, and therefore it would be still a bit help for writing them.
15
16This document targets people who already have enough C language skills
17and have basic linux kernel programming knowledge. This document doesn't
18explain the general topic of linux kernel coding and doesn't cover
19low-level driver implementation details. It only describes the standard
20way to write a PCI sound driver on ALSA.
21
7ddedebb
TI
22This document is still a draft version. Any feedback and corrections,
23please!!
24
25File Tree Structure
26===================
27
28General
29-------
30
f90afe79 31The file tree structure of ALSA driver is depicted below.
7ddedebb
TI
32
33::
34
35 sound
36 /core
37 /oss
38 /seq
39 /oss
7ddedebb
TI
40 /include
41 /drivers
42 /mpu401
43 /opl3
44 /i2c
7ddedebb
TI
45 /synth
46 /emux
47 /pci
48 /(cards)
49 /isa
50 /(cards)
51 /arm
52 /ppc
53 /sparc
54 /usb
55 /pcmcia /(cards)
f90afe79 56 /soc
7ddedebb
TI
57 /oss
58
59
60core directory
61--------------
62
63This directory contains the middle layer which is the heart of ALSA
64drivers. In this directory, the native ALSA modules are stored. The
65sub-directories contain different modules and are dependent upon the
66kernel config.
67
68core/oss
69~~~~~~~~
70
71The codes for PCM and mixer OSS emulation modules are stored in this
72directory. The rawmidi OSS emulation is included in the ALSA rawmidi
73code since it's quite small. The sequencer code is stored in
74``core/seq/oss`` directory (see `below <#core-seq-oss>`__).
75
7ddedebb
TI
76core/seq
77~~~~~~~~
78
79This directory and its sub-directories are for the ALSA sequencer. This
80directory contains the sequencer core and primary sequencer modules such
81like snd-seq-midi, snd-seq-virmidi, etc. They are compiled only when
82``CONFIG_SND_SEQUENCER`` is set in the kernel config.
83
84core/seq/oss
85~~~~~~~~~~~~
86
87This contains the OSS sequencer emulation codes.
88
7ddedebb
TI
89include directory
90-----------------
91
92This is the place for the public header files of ALSA drivers, which are
93to be exported to user-space, or included by several files at different
94directories. Basically, the private header files should not be placed in
95this directory, but you may still find files there, due to historical
96reasons :)
97
98drivers directory
99-----------------
100
101This directory contains code shared among different drivers on different
102architectures. They are hence supposed not to be architecture-specific.
103For example, the dummy pcm driver and the serial MIDI driver are found
104in this directory. In the sub-directories, there is code for components
105which are independent from bus and cpu architectures.
106
107drivers/mpu401
108~~~~~~~~~~~~~~
109
110The MPU401 and MPU401-UART modules are stored here.
111
112drivers/opl3 and opl4
113~~~~~~~~~~~~~~~~~~~~~
114
115The OPL3 and OPL4 FM-synth stuff is found here.
116
117i2c directory
118-------------
119
120This contains the ALSA i2c components.
121
122Although there is a standard i2c layer on Linux, ALSA has its own i2c
123code for some cards, because the soundcard needs only a simple operation
124and the standard i2c API is too complicated for such a purpose.
125
7ddedebb
TI
126synth directory
127---------------
128
129This contains the synth middle-level modules.
130
131So far, there is only Emu8000/Emu10k1 synth driver under the
132``synth/emux`` sub-directory.
133
134pci directory
135-------------
136
137This directory and its sub-directories hold the top-level card modules
138for PCI soundcards and the code specific to the PCI BUS.
139
140The drivers compiled from a single file are stored directly in the pci
141directory, while the drivers with several source files are stored on
142their own sub-directory (e.g. emu10k1, ice1712).
143
144isa directory
145-------------
146
147This directory and its sub-directories hold the top-level card modules
148for ISA soundcards.
149
150arm, ppc, and sparc directories
151-------------------------------
152
153They are used for top-level card modules which are specific to one of
154these architectures.
155
156usb directory
157-------------
158
159This directory contains the USB-audio driver. In the latest version, the
160USB MIDI driver is integrated in the usb-audio driver.
161
162pcmcia directory
163----------------
164
165The PCMCIA, especially PCCard drivers will go here. CardBus drivers will
166be in the pci directory, because their API is identical to that of
167standard PCI cards.
168
f90afe79
TI
169soc directory
170-------------
171
172This directory contains the codes for ASoC (ALSA System on Chip)
173layer including ASoC core, codec and machine drivers.
174
7ddedebb
TI
175oss directory
176-------------
177
f90afe79
TI
178Here contains OSS/Lite codes.
179All codes have been deprecated except for dmasound on m68k as of
180writing this.
181
7ddedebb
TI
182
183Basic Flow for PCI Drivers
184==========================
185
186Outline
187-------
188
189The minimum flow for PCI soundcards is as follows:
190
191- define the PCI ID table (see the section `PCI Entries`_).
192
193- create ``probe`` callback.
194
195- create ``remove`` callback.
196
197- create a :c:type:`struct pci_driver <pci_driver>` structure
198 containing the three pointers above.
199
200- create an ``init`` function just calling the
201 :c:func:`pci_register_driver()` to register the pci_driver
202 table defined above.
203
204- create an ``exit`` function to call the
205 :c:func:`pci_unregister_driver()` function.
206
207Full Code Example
208-----------------
209
210The code example is shown below. Some parts are kept unimplemented at
211this moment but will be filled in the next sections. The numbers in the
212comment lines of the :c:func:`snd_mychip_probe()` function refer
213to details explained in the following section.
214
215::
216
217 #include <linux/init.h>
218 #include <linux/pci.h>
219 #include <linux/slab.h>
220 #include <sound/core.h>
221 #include <sound/initval.h>
222
223 /* module parameters (see "Module Parameters") */
224 /* SNDRV_CARDS: maximum number of cards supported by this module */
225 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
226 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
227 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
228
229 /* definition of the chip-specific record */
230 struct mychip {
231 struct snd_card *card;
232 /* the rest of the implementation will be in section
233 * "PCI Resource Management"
234 */
235 };
236
237 /* chip-specific destructor
238 * (see "PCI Resource Management")
239 */
240 static int snd_mychip_free(struct mychip *chip)
241 {
242 .... /* will be implemented later... */
243 }
244
245 /* component-destructor
246 * (see "Management of Cards and Components")
247 */
248 static int snd_mychip_dev_free(struct snd_device *device)
249 {
250 return snd_mychip_free(device->device_data);
251 }
252
253 /* chip-specific constructor
254 * (see "Management of Cards and Components")
255 */
256 static int snd_mychip_create(struct snd_card *card,
257 struct pci_dev *pci,
258 struct mychip **rchip)
259 {
260 struct mychip *chip;
261 int err;
262 static struct snd_device_ops ops = {
263 .dev_free = snd_mychip_dev_free,
264 };
265
266 *rchip = NULL;
267
268 /* check PCI availability here
269 * (see "PCI Resource Management")
270 */
271 ....
272
273 /* allocate a chip-specific data with zero filled */
274 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
275 if (chip == NULL)
276 return -ENOMEM;
277
278 chip->card = card;
279
280 /* rest of initialization here; will be implemented
281 * later, see "PCI Resource Management"
282 */
283 ....
284
285 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
286 if (err < 0) {
287 snd_mychip_free(chip);
288 return err;
289 }
290
291 *rchip = chip;
292 return 0;
293 }
294
295 /* constructor -- see "Driver Constructor" sub-section */
296 static int snd_mychip_probe(struct pci_dev *pci,
297 const struct pci_device_id *pci_id)
298 {
299 static int dev;
300 struct snd_card *card;
301 struct mychip *chip;
302 int err;
303
304 /* (1) */
305 if (dev >= SNDRV_CARDS)
306 return -ENODEV;
307 if (!enable[dev]) {
308 dev++;
309 return -ENOENT;
310 }
311
312 /* (2) */
313 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
314 0, &card);
315 if (err < 0)
316 return err;
317
318 /* (3) */
319 err = snd_mychip_create(card, pci, &chip);
f90afe79
TI
320 if (err < 0)
321 goto error;
7ddedebb
TI
322
323 /* (4) */
324 strcpy(card->driver, "My Chip");
325 strcpy(card->shortname, "My Own Chip 123");
326 sprintf(card->longname, "%s at 0x%lx irq %i",
4b81dad1 327 card->shortname, chip->port, chip->irq);
7ddedebb
TI
328
329 /* (5) */
330 .... /* implemented later */
331
332 /* (6) */
333 err = snd_card_register(card);
f90afe79
TI
334 if (err < 0)
335 goto error;
7ddedebb
TI
336
337 /* (7) */
338 pci_set_drvdata(pci, card);
339 dev++;
340 return 0;
f90afe79
TI
341
342 error:
343 snd_card_free(card);
344 return err;
7ddedebb
TI
345 }
346
347 /* destructor -- see the "Destructor" sub-section */
348 static void snd_mychip_remove(struct pci_dev *pci)
349 {
350 snd_card_free(pci_get_drvdata(pci));
7ddedebb
TI
351 }
352
353
354
355Driver Constructor
356------------------
357
358The real constructor of PCI drivers is the ``probe`` callback. The
359``probe`` callback and other component-constructors which are called
360from the ``probe`` callback cannot be used with the ``__init`` prefix
361because any PCI device could be a hotplug device.
362
363In the ``probe`` callback, the following scheme is often used.
364
3651) Check and increment the device index.
366~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
367
368::
369
370 static int dev;
371 ....
372 if (dev >= SNDRV_CARDS)
373 return -ENODEV;
374 if (!enable[dev]) {
375 dev++;
376 return -ENOENT;
377 }
378
379
380where ``enable[dev]`` is the module option.
381
382Each time the ``probe`` callback is called, check the availability of
383the device. If not available, simply increment the device index and
384returns. dev will be incremented also later (`step 7
385<#set-the-pci-driver-data-and-return-zero>`__).
386
3872) Create a card instance
388~~~~~~~~~~~~~~~~~~~~~~~~~
389
390::
391
392 struct snd_card *card;
393 int err;
394 ....
395 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
396 0, &card);
397
398
399The details will be explained in the section `Management of Cards and
400Components`_.
401
4023) Create a main component
403~~~~~~~~~~~~~~~~~~~~~~~~~~
404
405In this part, the PCI resources are allocated.
406
407::
408
409 struct mychip *chip;
410 ....
411 err = snd_mychip_create(card, pci, &chip);
f90afe79
TI
412 if (err < 0)
413 goto error;
7ddedebb
TI
414
415The details will be explained in the section `PCI Resource
416Management`_.
417
f90afe79
TI
418When something goes wrong, the probe function needs to deal with the
419error. In this example, we have a single error handling path placed
420at the end of the function.
421
422::
423
424 error:
425 snd_card_free(card);
426 return err;
427
428Since each component can be properly freed, the single
429:c:func:`snd_card_free()` call should suffice in most cases.
430
431
7ddedebb
TI
4324) Set the driver ID and name strings.
433~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
434
435::
436
437 strcpy(card->driver, "My Chip");
438 strcpy(card->shortname, "My Own Chip 123");
439 sprintf(card->longname, "%s at 0x%lx irq %i",
4b81dad1 440 card->shortname, chip->port, chip->irq);
7ddedebb
TI
441
442The driver field holds the minimal ID string of the chip. This is used
443by alsa-lib's configurator, so keep it simple but unique. Even the
444same driver can have different driver IDs to distinguish the
445functionality of each chip type.
446
447The shortname field is a string shown as more verbose name. The longname
448field contains the information shown in ``/proc/asound/cards``.
449
4505) Create other components, such as mixer, MIDI, etc.
451~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
452
453Here you define the basic components such as `PCM <#PCM-Interface>`__,
454mixer (e.g. `AC97 <#API-for-AC97-Codec>`__), MIDI (e.g.
455`MPU-401 <#MIDI-MPU401-UART-Interface>`__), and other interfaces.
456Also, if you want a `proc file <#Proc-Interface>`__, define it here,
457too.
458
4596) Register the card instance.
460~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
461
462::
463
464 err = snd_card_register(card);
f90afe79
TI
465 if (err < 0)
466 goto error;
7ddedebb
TI
467
468Will be explained in the section `Management of Cards and
469Components`_, too.
470
4717) Set the PCI driver data and return zero.
472~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
473
474::
475
476 pci_set_drvdata(pci, card);
477 dev++;
478 return 0;
479
480In the above, the card record is stored. This pointer is used in the
481remove callback and power-management callbacks, too.
482
483Destructor
484----------
485
486The destructor, remove callback, simply releases the card instance. Then
487the ALSA middle layer will release all the attached components
488automatically.
489
f90afe79 490It would be typically just :c:func:`calling snd_card_free()`:
7ddedebb
TI
491
492::
493
494 static void snd_mychip_remove(struct pci_dev *pci)
495 {
496 snd_card_free(pci_get_drvdata(pci));
7ddedebb
TI
497 }
498
499
500The above code assumes that the card pointer is set to the PCI driver
501data.
502
503Header Files
504------------
505
506For the above example, at least the following include files are
507necessary.
508
509::
510
511 #include <linux/init.h>
512 #include <linux/pci.h>
513 #include <linux/slab.h>
514 #include <sound/core.h>
515 #include <sound/initval.h>
516
517where the last one is necessary only when module options are defined
518in the source file. If the code is split into several files, the files
519without module options don't need them.
520
521In addition to these headers, you'll need ``<linux/interrupt.h>`` for
f90afe79 522interrupt handling, and ``<linux/io.h>`` for I/O access. If you use the
7ddedebb
TI
523:c:func:`mdelay()` or :c:func:`udelay()` functions, you'll need
524to include ``<linux/delay.h>`` too.
525
526The ALSA interfaces like the PCM and control APIs are defined in other
527``<sound/xxx.h>`` header files. They have to be included after
528``<sound/core.h>``.
529
530Management of Cards and Components
531==================================
532
533Card Instance
534-------------
535
536For each soundcard, a “card” record must be allocated.
537
538A card record is the headquarters of the soundcard. It manages the whole
539list of devices (components) on the soundcard, such as PCM, mixers,
540MIDI, synthesizer, and so on. Also, the card record holds the ID and the
541name strings of the card, manages the root of proc files, and controls
542the power-management states and hotplug disconnections. The component
543list on the card record is used to manage the correct release of
544resources at destruction.
545
546As mentioned above, to create a card instance, call
547:c:func:`snd_card_new()`.
548
549::
550
551 struct snd_card *card;
552 int err;
553 err = snd_card_new(&pci->dev, index, id, module, extra_size, &card);
554
555
556The function takes six arguments: the parent device pointer, the
557card-index number, the id string, the module pointer (usually
558``THIS_MODULE``), the size of extra-data space, and the pointer to
559return the card instance. The extra_size argument is used to allocate
560card->private_data for the chip-specific data. Note that these data are
561allocated by :c:func:`snd_card_new()`.
562
563The first argument, the pointer of struct :c:type:`struct device
564<device>`, specifies the parent device. For PCI devices, typically
565``&pci->`` is passed there.
566
567Components
568----------
569
570After the card is created, you can attach the components (devices) to
571the card instance. In an ALSA driver, a component is represented as a
572:c:type:`struct snd_device <snd_device>` object. A component
573can be a PCM instance, a control interface, a raw MIDI interface, etc.
574Each such instance has one component entry.
575
576A component can be created via :c:func:`snd_device_new()`
577function.
578
579::
580
581 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
582
583This takes the card pointer, the device-level (``SNDRV_DEV_XXX``), the
584data pointer, and the callback pointers (``&ops``). The device-level
585defines the type of components and the order of registration and
586de-registration. For most components, the device-level is already
587defined. For a user-defined component, you can use
588``SNDRV_DEV_LOWLEVEL``.
589
590This function itself doesn't allocate the data space. The data must be
591allocated manually beforehand, and its pointer is passed as the
592argument. This pointer (``chip`` in the above example) is used as the
593identifier for the instance.
594
595Each pre-defined ALSA component such as ac97 and pcm calls
596:c:func:`snd_device_new()` inside its constructor. The destructor
597for each component is defined in the callback pointers. Hence, you don't
598need to take care of calling a destructor for such a component.
599
600If you wish to create your own component, you need to set the destructor
601function to the dev_free callback in the ``ops``, so that it can be
602released automatically via :c:func:`snd_card_free()`. The next
603example will show an implementation of chip-specific data.
604
605Chip-Specific Data
606------------------
607
608Chip-specific information, e.g. the I/O port address, its resource
609pointer, or the irq number, is stored in the chip-specific record.
610
611::
612
613 struct mychip {
614 ....
615 };
616
617
618In general, there are two ways of allocating the chip record.
619
6201. Allocating via :c:func:`snd_card_new()`.
621~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
622
623As mentioned above, you can pass the extra-data-length to the 5th
624argument of :c:func:`snd_card_new()`, i.e.
625
626::
627
628 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
629 sizeof(struct mychip), &card);
630
631:c:type:`struct mychip <mychip>` is the type of the chip record.
632
633In return, the allocated record can be accessed as
634
635::
636
637 struct mychip *chip = card->private_data;
638
639With this method, you don't have to allocate twice. The record is
640released together with the card instance.
641
6422. Allocating an extra device.
643~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
644
645After allocating a card instance via :c:func:`snd_card_new()`
646(with ``0`` on the 4th arg), call :c:func:`kzalloc()`.
647
648::
649
650 struct snd_card *card;
651 struct mychip *chip;
652 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
653 0, &card);
654 .....
655 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
656
657The chip record should have the field to hold the card pointer at least,
658
659::
660
661 struct mychip {
662 struct snd_card *card;
663 ....
664 };
665
666
667Then, set the card pointer in the returned chip instance.
668
669::
670
671 chip->card = card;
672
673Next, initialize the fields, and register this chip record as a
674low-level device with a specified ``ops``,
675
676::
677
678 static struct snd_device_ops ops = {
679 .dev_free = snd_mychip_dev_free,
680 };
681 ....
682 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
683
684:c:func:`snd_mychip_dev_free()` is the device-destructor
685function, which will call the real destructor.
686
687::
688
689 static int snd_mychip_dev_free(struct snd_device *device)
690 {
691 return snd_mychip_free(device->device_data);
692 }
693
694where :c:func:`snd_mychip_free()` is the real destructor.
695
f90afe79
TI
696The demerit of this method is the obviously more amount of codes.
697The merit is, however, you can trigger the own callback at registering
698and disconnecting the card via setting in snd_device_ops.
699About the registering and disconnecting the card, see the subsections
700below.
701
702
7ddedebb
TI
703Registration and Release
704------------------------
705
706After all components are assigned, register the card instance by calling
707:c:func:`snd_card_register()`. Access to the device files is
708enabled at this point. That is, before
709:c:func:`snd_card_register()` is called, the components are safely
710inaccessible from external side. If this call fails, exit the probe
711function after releasing the card via :c:func:`snd_card_free()`.
712
713For releasing the card instance, you can call simply
714:c:func:`snd_card_free()`. As mentioned earlier, all components
715are released automatically by this call.
716
717For a device which allows hotplugging, you can use
718:c:func:`snd_card_free_when_closed()`. This one will postpone
719the destruction until all devices are closed.
720
721PCI Resource Management
722=======================
723
724Full Code Example
725-----------------
726
727In this section, we'll complete the chip-specific constructor,
728destructor and PCI entries. Example code is shown first, below.
729
730::
731
732 struct mychip {
733 struct snd_card *card;
734 struct pci_dev *pci;
735
736 unsigned long port;
737 int irq;
738 };
739
740 static int snd_mychip_free(struct mychip *chip)
741 {
742 /* disable hardware here if any */
743 .... /* (not implemented in this document) */
744
745 /* release the irq */
746 if (chip->irq >= 0)
747 free_irq(chip->irq, chip);
748 /* release the I/O ports & memory */
749 pci_release_regions(chip->pci);
750 /* disable the PCI entry */
751 pci_disable_device(chip->pci);
752 /* release the data */
753 kfree(chip);
754 return 0;
755 }
756
757 /* chip-specific constructor */
758 static int snd_mychip_create(struct snd_card *card,
759 struct pci_dev *pci,
760 struct mychip **rchip)
761 {
762 struct mychip *chip;
763 int err;
764 static struct snd_device_ops ops = {
765 .dev_free = snd_mychip_dev_free,
766 };
767
768 *rchip = NULL;
769
770 /* initialize the PCI entry */
771 err = pci_enable_device(pci);
772 if (err < 0)
773 return err;
774 /* check PCI availability (28bit DMA) */
775 if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
776 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
777 printk(KERN_ERR "error to set 28bit mask DMA\n");
778 pci_disable_device(pci);
779 return -ENXIO;
780 }
781
782 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
783 if (chip == NULL) {
784 pci_disable_device(pci);
785 return -ENOMEM;
786 }
787
788 /* initialize the stuff */
789 chip->card = card;
790 chip->pci = pci;
791 chip->irq = -1;
792
793 /* (1) PCI resource allocation */
794 err = pci_request_regions(pci, "My Chip");
795 if (err < 0) {
796 kfree(chip);
797 pci_disable_device(pci);
798 return err;
799 }
800 chip->port = pci_resource_start(pci, 0);
801 if (request_irq(pci->irq, snd_mychip_interrupt,
802 IRQF_SHARED, KBUILD_MODNAME, chip)) {
803 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
804 snd_mychip_free(chip);
805 return -EBUSY;
806 }
807 chip->irq = pci->irq;
808
809 /* (2) initialization of the chip hardware */
810 .... /* (not implemented in this document) */
811
812 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
813 if (err < 0) {
814 snd_mychip_free(chip);
815 return err;
816 }
817
818 *rchip = chip;
819 return 0;
820 }
821
822 /* PCI IDs */
823 static struct pci_device_id snd_mychip_ids[] = {
824 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
825 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
826 ....
827 { 0, }
828 };
829 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
830
831 /* pci_driver definition */
832 static struct pci_driver driver = {
833 .name = KBUILD_MODNAME,
834 .id_table = snd_mychip_ids,
835 .probe = snd_mychip_probe,
836 .remove = snd_mychip_remove,
837 };
838
839 /* module initialization */
840 static int __init alsa_card_mychip_init(void)
841 {
842 return pci_register_driver(&driver);
843 }
844
845 /* module clean up */
846 static void __exit alsa_card_mychip_exit(void)
847 {
848 pci_unregister_driver(&driver);
849 }
850
851 module_init(alsa_card_mychip_init)
852 module_exit(alsa_card_mychip_exit)
853
854 EXPORT_NO_SYMBOLS; /* for old kernels only */
855
856Some Hafta's
857------------
858
859The allocation of PCI resources is done in the ``probe`` function, and
860usually an extra :c:func:`xxx_create()` function is written for this
861purpose.
862
863In the case of PCI devices, you first have to call the
864:c:func:`pci_enable_device()` function before allocating
865resources. Also, you need to set the proper PCI DMA mask to limit the
866accessed I/O range. In some cases, you might need to call
867:c:func:`pci_set_master()` function, too.
868
869Suppose the 28bit mask, and the code to be added would be like:
870
871::
872
873 err = pci_enable_device(pci);
874 if (err < 0)
875 return err;
876 if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
877 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
878 printk(KERN_ERR "error to set 28bit mask DMA\n");
879 pci_disable_device(pci);
880 return -ENXIO;
881 }
882
883
884Resource Allocation
885-------------------
886
887The allocation of I/O ports and irqs is done via standard kernel
f90afe79
TI
888functions. These resources must be released in the destructor
889function (see below).
7ddedebb
TI
890
891Now assume that the PCI device has an I/O port with 8 bytes and an
892interrupt. Then :c:type:`struct mychip <mychip>` will have the
893following fields:
894
895::
896
897 struct mychip {
898 struct snd_card *card;
899
900 unsigned long port;
901 int irq;
902 };
903
904
905For an I/O port (and also a memory region), you need to have the
906resource pointer for the standard resource management. For an irq, you
907have to keep only the irq number (integer). But you need to initialize
908this number as -1 before actual allocation, since irq 0 is valid. The
909port address and its resource pointer can be initialized as null by
910:c:func:`kzalloc()` automatically, so you don't have to take care of
911resetting them.
912
913The allocation of an I/O port is done like this:
914
915::
916
917 err = pci_request_regions(pci, "My Chip");
918 if (err < 0) {
919 kfree(chip);
920 pci_disable_device(pci);
921 return err;
922 }
923 chip->port = pci_resource_start(pci, 0);
924
925It will reserve the I/O port region of 8 bytes of the given PCI device.
926The returned value, ``chip->res_port``, is allocated via
927:c:func:`kmalloc()` by :c:func:`request_region()`. The pointer
928must be released via :c:func:`kfree()`, but there is a problem with
929this. This issue will be explained later.
930
931The allocation of an interrupt source is done like this:
932
933::
934
935 if (request_irq(pci->irq, snd_mychip_interrupt,
936 IRQF_SHARED, KBUILD_MODNAME, chip)) {
937 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
938 snd_mychip_free(chip);
939 return -EBUSY;
940 }
941 chip->irq = pci->irq;
942
943where :c:func:`snd_mychip_interrupt()` is the interrupt handler
944defined `later <#pcm-interface-interrupt-handler>`__. Note that
945``chip->irq`` should be defined only when :c:func:`request_irq()`
946succeeded.
947
948On the PCI bus, interrupts can be shared. Thus, ``IRQF_SHARED`` is used
949as the interrupt flag of :c:func:`request_irq()`.
950
951The last argument of :c:func:`request_irq()` is the data pointer
952passed to the interrupt handler. Usually, the chip-specific record is
953used for that, but you can use what you like, too.
954
955I won't give details about the interrupt handler at this point, but at
956least its appearance can be explained now. The interrupt handler looks
957usually like the following:
958
959::
960
961 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
962 {
963 struct mychip *chip = dev_id;
964 ....
965 return IRQ_HANDLED;
966 }
967
968
969Now let's write the corresponding destructor for the resources above.
970The role of destructor is simple: disable the hardware (if already
971activated) and release the resources. So far, we have no hardware part,
972so the disabling code is not written here.
973
974To release the resources, the “check-and-release” method is a safer way.
975For the interrupt, do like this:
976
977::
978
979 if (chip->irq >= 0)
980 free_irq(chip->irq, chip);
981
982Since the irq number can start from 0, you should initialize
983``chip->irq`` with a negative value (e.g. -1), so that you can check
984the validity of the irq number as above.
985
986When you requested I/O ports or memory regions via
987:c:func:`pci_request_region()` or
988:c:func:`pci_request_regions()` like in this example, release the
989resource(s) using the corresponding function,
990:c:func:`pci_release_region()` or
991:c:func:`pci_release_regions()`.
992
993::
994
995 pci_release_regions(chip->pci);
996
997When you requested manually via :c:func:`request_region()` or
998:c:func:`request_mem_region()`, you can release it via
999:c:func:`release_resource()`. Suppose that you keep the resource
1000pointer returned from :c:func:`request_region()` in
1001chip->res_port, the release procedure looks like:
1002
1003::
1004
1005 release_and_free_resource(chip->res_port);
1006
1007Don't forget to call :c:func:`pci_disable_device()` before the
1008end.
1009
1010And finally, release the chip-specific record.
1011
1012::
1013
1014 kfree(chip);
1015
1016We didn't implement the hardware disabling part in the above. If you
1017need to do this, please note that the destructor may be called even
1018before the initialization of the chip is completed. It would be better
1019to have a flag to skip hardware disabling if the hardware was not
1020initialized yet.
1021
1022When the chip-data is assigned to the card using
1023:c:func:`snd_device_new()` with ``SNDRV_DEV_LOWLELVEL`` , its
1024destructor is called at the last. That is, it is assured that all other
1025components like PCMs and controls have already been released. You don't
1026have to stop PCMs, etc. explicitly, but just call low-level hardware
1027stopping.
1028
1029The management of a memory-mapped region is almost as same as the
1030management of an I/O port. You'll need three fields like the
1031following:
1032
1033::
1034
1035 struct mychip {
1036 ....
1037 unsigned long iobase_phys;
1038 void __iomem *iobase_virt;
1039 };
1040
1041and the allocation would be like below:
1042
1043::
1044
f90afe79
TI
1045 err = pci_request_regions(pci, "My Chip");
1046 if (err < 0) {
7ddedebb
TI
1047 kfree(chip);
1048 return err;
1049 }
1050 chip->iobase_phys = pci_resource_start(pci, 0);
1051 chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1052 pci_resource_len(pci, 0));
1053
1054and the corresponding destructor would be:
1055
1056::
1057
1058 static int snd_mychip_free(struct mychip *chip)
1059 {
1060 ....
1061 if (chip->iobase_virt)
1062 iounmap(chip->iobase_virt);
1063 ....
1064 pci_release_regions(chip->pci);
1065 ....
1066 }
1067
f90afe79
TI
1068Of course, a modern way with :c:func:`pci_iomap()` will make things a
1069bit easier, too.
1070
1071::
1072
1073 err = pci_request_regions(pci, "My Chip");
1074 if (err < 0) {
1075 kfree(chip);
1076 return err;
1077 }
1078 chip->iobase_virt = pci_iomap(pci, 0, 0);
1079
1080which is paired with :c:func:`pci_iounmap()` at destructor.
1081
1082
7ddedebb
TI
1083PCI Entries
1084-----------
1085
1086So far, so good. Let's finish the missing PCI stuff. At first, we need a
1087:c:type:`struct pci_device_id <pci_device_id>` table for
1088this chipset. It's a table of PCI vendor/device ID number, and some
1089masks.
1090
1091For example,
1092
1093::
1094
1095 static struct pci_device_id snd_mychip_ids[] = {
1096 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1097 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1098 ....
1099 { 0, }
1100 };
1101 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1102
1103The first and second fields of the :c:type:`struct pci_device_id
1104<pci_device_id>` structure are the vendor and device IDs. If you
1105have no reason to filter the matching devices, you can leave the
1106remaining fields as above. The last field of the :c:type:`struct
1107pci_device_id <pci_device_id>` struct contains private data
1108for this entry. You can specify any value here, for example, to define
1109specific operations for supported device IDs. Such an example is found
1110in the intel8x0 driver.
1111
1112The last entry of this list is the terminator. You must specify this
1113all-zero entry.
1114
1115Then, prepare the :c:type:`struct pci_driver <pci_driver>`
1116record:
1117
1118::
1119
1120 static struct pci_driver driver = {
1121 .name = KBUILD_MODNAME,
1122 .id_table = snd_mychip_ids,
1123 .probe = snd_mychip_probe,
1124 .remove = snd_mychip_remove,
1125 };
1126
1127The ``probe`` and ``remove`` functions have already been defined in
1128the previous sections. The ``name`` field is the name string of this
1129device. Note that you must not use a slash “/” in this string.
1130
1131And at last, the module entries:
1132
1133::
1134
1135 static int __init alsa_card_mychip_init(void)
1136 {
1137 return pci_register_driver(&driver);
1138 }
1139
1140 static void __exit alsa_card_mychip_exit(void)
1141 {
1142 pci_unregister_driver(&driver);
1143 }
1144
1145 module_init(alsa_card_mychip_init)
1146 module_exit(alsa_card_mychip_exit)
1147
1148Note that these module entries are tagged with ``__init`` and ``__exit``
1149prefixes.
1150
7ddedebb
TI
1151That's all!
1152
1153PCM Interface
1154=============
1155
1156General
1157-------
1158
1159The PCM middle layer of ALSA is quite powerful and it is only necessary
1160for each driver to implement the low-level functions to access its
1161hardware.
1162
1163For accessing to the PCM layer, you need to include ``<sound/pcm.h>``
1164first. In addition, ``<sound/pcm_params.h>`` might be needed if you
1165access to some functions related with hw_param.
1166
1167Each card device can have up to four pcm instances. A pcm instance
1168corresponds to a pcm device file. The limitation of number of instances
1169comes only from the available bit size of the Linux's device numbers.
1170Once when 64bit device number is used, we'll have more pcm instances
1171available.
1172
1173A pcm instance consists of pcm playback and capture streams, and each
1174pcm stream consists of one or more pcm substreams. Some soundcards
1175support multiple playback functions. For example, emu10k1 has a PCM
1176playback of 32 stereo substreams. In this case, at each open, a free
1177substream is (usually) automatically chosen and opened. Meanwhile, when
1178only one substream exists and it was already opened, the successful open
1179will either block or error with ``EAGAIN`` according to the file open
1180mode. But you don't have to care about such details in your driver. The
1181PCM middle layer will take care of such work.
1182
1183Full Code Example
1184-----------------
1185
1186The example code below does not include any hardware access routines but
1187shows only the skeleton, how to build up the PCM interfaces.
1188
1189::
1190
1191 #include <sound/pcm.h>
1192 ....
1193
1194 /* hardware definition */
1195 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1196 .info = (SNDRV_PCM_INFO_MMAP |
1197 SNDRV_PCM_INFO_INTERLEAVED |
1198 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1199 SNDRV_PCM_INFO_MMAP_VALID),
1200 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1201 .rates = SNDRV_PCM_RATE_8000_48000,
1202 .rate_min = 8000,
1203 .rate_max = 48000,
1204 .channels_min = 2,
1205 .channels_max = 2,
1206 .buffer_bytes_max = 32768,
1207 .period_bytes_min = 4096,
1208 .period_bytes_max = 32768,
1209 .periods_min = 1,
1210 .periods_max = 1024,
1211 };
1212
1213 /* hardware definition */
1214 static struct snd_pcm_hardware snd_mychip_capture_hw = {
1215 .info = (SNDRV_PCM_INFO_MMAP |
1216 SNDRV_PCM_INFO_INTERLEAVED |
1217 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1218 SNDRV_PCM_INFO_MMAP_VALID),
1219 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1220 .rates = SNDRV_PCM_RATE_8000_48000,
1221 .rate_min = 8000,
1222 .rate_max = 48000,
1223 .channels_min = 2,
1224 .channels_max = 2,
1225 .buffer_bytes_max = 32768,
1226 .period_bytes_min = 4096,
1227 .period_bytes_max = 32768,
1228 .periods_min = 1,
1229 .periods_max = 1024,
1230 };
1231
1232 /* open callback */
1233 static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1234 {
1235 struct mychip *chip = snd_pcm_substream_chip(substream);
1236 struct snd_pcm_runtime *runtime = substream->runtime;
1237
1238 runtime->hw = snd_mychip_playback_hw;
1239 /* more hardware-initialization will be done here */
1240 ....
1241 return 0;
1242 }
1243
1244 /* close callback */
1245 static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1246 {
1247 struct mychip *chip = snd_pcm_substream_chip(substream);
1248 /* the hardware-specific codes will be here */
1249 ....
1250 return 0;
1251
1252 }
1253
1254 /* open callback */
1255 static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1256 {
1257 struct mychip *chip = snd_pcm_substream_chip(substream);
1258 struct snd_pcm_runtime *runtime = substream->runtime;
1259
1260 runtime->hw = snd_mychip_capture_hw;
1261 /* more hardware-initialization will be done here */
1262 ....
1263 return 0;
1264 }
1265
1266 /* close callback */
1267 static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1268 {
1269 struct mychip *chip = snd_pcm_substream_chip(substream);
1270 /* the hardware-specific codes will be here */
1271 ....
1272 return 0;
1273
1274 }
1275
1276 /* hw_params callback */
1277 static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1278 struct snd_pcm_hw_params *hw_params)
1279 {
1280 return snd_pcm_lib_malloc_pages(substream,
1281 params_buffer_bytes(hw_params));
1282 }
1283
1284 /* hw_free callback */
1285 static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1286 {
1287 return snd_pcm_lib_free_pages(substream);
1288 }
1289
1290 /* prepare callback */
1291 static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1292 {
1293 struct mychip *chip = snd_pcm_substream_chip(substream);
1294 struct snd_pcm_runtime *runtime = substream->runtime;
1295
1296 /* set up the hardware with the current configuration
1297 * for example...
1298 */
1299 mychip_set_sample_format(chip, runtime->format);
1300 mychip_set_sample_rate(chip, runtime->rate);
1301 mychip_set_channels(chip, runtime->channels);
1302 mychip_set_dma_setup(chip, runtime->dma_addr,
1303 chip->buffer_size,
1304 chip->period_size);
1305 return 0;
1306 }
1307
1308 /* trigger callback */
1309 static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1310 int cmd)
1311 {
1312 switch (cmd) {
1313 case SNDRV_PCM_TRIGGER_START:
1314 /* do something to start the PCM engine */
1315 ....
1316 break;
1317 case SNDRV_PCM_TRIGGER_STOP:
1318 /* do something to stop the PCM engine */
1319 ....
1320 break;
1321 default:
1322 return -EINVAL;
1323 }
1324 }
1325
1326 /* pointer callback */
1327 static snd_pcm_uframes_t
1328 snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1329 {
1330 struct mychip *chip = snd_pcm_substream_chip(substream);
1331 unsigned int current_ptr;
1332
1333 /* get the current hardware pointer */
1334 current_ptr = mychip_get_hw_pointer(chip);
1335 return current_ptr;
1336 }
1337
1338 /* operators */
1339 static struct snd_pcm_ops snd_mychip_playback_ops = {
1340 .open = snd_mychip_playback_open,
1341 .close = snd_mychip_playback_close,
1342 .ioctl = snd_pcm_lib_ioctl,
1343 .hw_params = snd_mychip_pcm_hw_params,
1344 .hw_free = snd_mychip_pcm_hw_free,
1345 .prepare = snd_mychip_pcm_prepare,
1346 .trigger = snd_mychip_pcm_trigger,
1347 .pointer = snd_mychip_pcm_pointer,
1348 };
1349
1350 /* operators */
1351 static struct snd_pcm_ops snd_mychip_capture_ops = {
1352 .open = snd_mychip_capture_open,
1353 .close = snd_mychip_capture_close,
1354 .ioctl = snd_pcm_lib_ioctl,
1355 .hw_params = snd_mychip_pcm_hw_params,
1356 .hw_free = snd_mychip_pcm_hw_free,
1357 .prepare = snd_mychip_pcm_prepare,
1358 .trigger = snd_mychip_pcm_trigger,
1359 .pointer = snd_mychip_pcm_pointer,
1360 };
1361
1362 /*
1363 * definitions of capture are omitted here...
1364 */
1365
1366 /* create a pcm device */
1367 static int snd_mychip_new_pcm(struct mychip *chip)
1368 {
1369 struct snd_pcm *pcm;
1370 int err;
1371
1372 err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1373 if (err < 0)
1374 return err;
1375 pcm->private_data = chip;
1376 strcpy(pcm->name, "My Chip");
1377 chip->pcm = pcm;
1378 /* set operators */
1379 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1380 &snd_mychip_playback_ops);
1381 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1382 &snd_mychip_capture_ops);
1383 /* pre-allocation of buffers */
1384 /* NOTE: this may fail */
1385 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1386 snd_dma_pci_data(chip->pci),
1387 64*1024, 64*1024);
1388 return 0;
1389 }
1390
1391
1392PCM Constructor
1393---------------
1394
1395A pcm instance is allocated by the :c:func:`snd_pcm_new()`
1396function. It would be better to create a constructor for pcm, namely,
1397
1398::
1399
1400 static int snd_mychip_new_pcm(struct mychip *chip)
1401 {
1402 struct snd_pcm *pcm;
1403 int err;
1404
1405 err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1406 if (err < 0)
1407 return err;
1408 pcm->private_data = chip;
1409 strcpy(pcm->name, "My Chip");
1410 chip->pcm = pcm;
1411 ....
1412 return 0;
1413 }
1414
1415The :c:func:`snd_pcm_new()` function takes four arguments. The
1416first argument is the card pointer to which this pcm is assigned, and
1417the second is the ID string.
1418
1419The third argument (``index``, 0 in the above) is the index of this new
1420pcm. It begins from zero. If you create more than one pcm instances,
1421specify the different numbers in this argument. For example, ``index =
14221`` for the second PCM device.
1423
1424The fourth and fifth arguments are the number of substreams for playback
1425and capture, respectively. Here 1 is used for both arguments. When no
1426playback or capture substreams are available, pass 0 to the
1427corresponding argument.
1428
1429If a chip supports multiple playbacks or captures, you can specify more
1430numbers, but they must be handled properly in open/close, etc.
1431callbacks. When you need to know which substream you are referring to,
1432then it can be obtained from :c:type:`struct snd_pcm_substream
1433<snd_pcm_substream>` data passed to each callback as follows:
1434
1435::
1436
1437 struct snd_pcm_substream *substream;
1438 int index = substream->number;
1439
1440
1441After the pcm is created, you need to set operators for each pcm stream.
1442
1443::
1444
1445 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1446 &snd_mychip_playback_ops);
1447 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1448 &snd_mychip_capture_ops);
1449
1450The operators are defined typically like this:
1451
1452::
1453
1454 static struct snd_pcm_ops snd_mychip_playback_ops = {
1455 .open = snd_mychip_pcm_open,
1456 .close = snd_mychip_pcm_close,
1457 .ioctl = snd_pcm_lib_ioctl,
1458 .hw_params = snd_mychip_pcm_hw_params,
1459 .hw_free = snd_mychip_pcm_hw_free,
1460 .prepare = snd_mychip_pcm_prepare,
1461 .trigger = snd_mychip_pcm_trigger,
1462 .pointer = snd_mychip_pcm_pointer,
1463 };
1464
1465All the callbacks are described in the Operators_ subsection.
1466
1467After setting the operators, you probably will want to pre-allocate the
1468buffer. For the pre-allocation, simply call the following:
1469
1470::
1471
1472 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1473 snd_dma_pci_data(chip->pci),
1474 64*1024, 64*1024);
1475
1476It will allocate a buffer up to 64kB as default. Buffer management
1477details will be described in the later section `Buffer and Memory
1478Management`_.
1479
1480Additionally, you can set some extra information for this pcm in
1481``pcm->info_flags``. The available values are defined as
1482``SNDRV_PCM_INFO_XXX`` in ``<sound/asound.h>``, which is used for the
1483hardware definition (described later). When your soundchip supports only
1484half-duplex, specify like this:
1485
1486::
1487
1488 pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1489
1490
1491... And the Destructor?
1492-----------------------
1493
1494The destructor for a pcm instance is not always necessary. Since the pcm
1495device will be released by the middle layer code automatically, you
1496don't have to call the destructor explicitly.
1497
1498The destructor would be necessary if you created special records
1499internally and needed to release them. In such a case, set the
1500destructor function to ``pcm->private_free``:
1501
1502::
1503
1504 static void mychip_pcm_free(struct snd_pcm *pcm)
1505 {
1506 struct mychip *chip = snd_pcm_chip(pcm);
1507 /* free your own data */
1508 kfree(chip->my_private_pcm_data);
1509 /* do what you like else */
1510 ....
1511 }
1512
1513 static int snd_mychip_new_pcm(struct mychip *chip)
1514 {
1515 struct snd_pcm *pcm;
1516 ....
1517 /* allocate your own data */
1518 chip->my_private_pcm_data = kmalloc(...);
1519 /* set the destructor */
1520 pcm->private_data = chip;
1521 pcm->private_free = mychip_pcm_free;
1522 ....
1523 }
1524
1525
1526
1527Runtime Pointer - The Chest of PCM Information
1528----------------------------------------------
1529
1530When the PCM substream is opened, a PCM runtime instance is allocated
1531and assigned to the substream. This pointer is accessible via
1532``substream->runtime``. This runtime pointer holds most information you
1533need to control the PCM: the copy of hw_params and sw_params
1534configurations, the buffer pointers, mmap records, spinlocks, etc.
1535
1536The definition of runtime instance is found in ``<sound/pcm.h>``. Here
1537are the contents of this file:
1538
1539::
1540
1541 struct _snd_pcm_runtime {
1542 /* -- Status -- */
1543 struct snd_pcm_substream *trigger_master;
1544 snd_timestamp_t trigger_tstamp; /* trigger timestamp */
1545 int overrange;
1546 snd_pcm_uframes_t avail_max;
1547 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
1548 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
1549
1550 /* -- HW params -- */
1551 snd_pcm_access_t access; /* access mode */
1552 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
1553 snd_pcm_subformat_t subformat; /* subformat */
1554 unsigned int rate; /* rate in Hz */
1555 unsigned int channels; /* channels */
1556 snd_pcm_uframes_t period_size; /* period size */
1557 unsigned int periods; /* periods */
1558 snd_pcm_uframes_t buffer_size; /* buffer size */
1559 unsigned int tick_time; /* tick time */
1560 snd_pcm_uframes_t min_align; /* Min alignment for the format */
1561 size_t byte_align;
1562 unsigned int frame_bits;
1563 unsigned int sample_bits;
1564 unsigned int info;
1565 unsigned int rate_num;
1566 unsigned int rate_den;
1567
1568 /* -- SW params -- */
1569 struct timespec tstamp_mode; /* mmap timestamp is updated */
1570 unsigned int period_step;
1571 unsigned int sleep_min; /* min ticks to sleep */
1572 snd_pcm_uframes_t start_threshold;
1573 snd_pcm_uframes_t stop_threshold;
1574 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
1575 noise is nearest than this */
1576 snd_pcm_uframes_t silence_size; /* Silence filling size */
1577 snd_pcm_uframes_t boundary; /* pointers wrap point */
1578
1579 snd_pcm_uframes_t silenced_start;
1580 snd_pcm_uframes_t silenced_size;
1581
1582 snd_pcm_sync_id_t sync; /* hardware synchronization ID */
1583
1584 /* -- mmap -- */
1585 volatile struct snd_pcm_mmap_status *status;
1586 volatile struct snd_pcm_mmap_control *control;
1587 atomic_t mmap_count;
1588
1589 /* -- locking / scheduling -- */
1590 spinlock_t lock;
1591 wait_queue_head_t sleep;
1592 struct timer_list tick_timer;
1593 struct fasync_struct *fasync;
1594
1595 /* -- private section -- */
1596 void *private_data;
1597 void (*private_free)(struct snd_pcm_runtime *runtime);
1598
1599 /* -- hardware description -- */
1600 struct snd_pcm_hardware hw;
1601 struct snd_pcm_hw_constraints hw_constraints;
1602
1603 /* -- timer -- */
1604 unsigned int timer_resolution; /* timer resolution */
1605
1606 /* -- DMA -- */
1607 unsigned char *dma_area; /* DMA area */
1608 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
1609 size_t dma_bytes; /* size of DMA area */
1610
1611 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
1612
1613 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
1614 /* -- OSS things -- */
1615 struct snd_pcm_oss_runtime oss;
1616 #endif
1617 };
1618
1619
1620For the operators (callbacks) of each sound driver, most of these
1621records are supposed to be read-only. Only the PCM middle-layer changes
1622/ updates them. The exceptions are the hardware description (hw) DMA
1623buffer information and the private data. Besides, if you use the
1624standard buffer allocation method via
1625:c:func:`snd_pcm_lib_malloc_pages()`, you don't need to set the
1626DMA buffer information by yourself.
1627
1628In the sections below, important records are explained.
1629
1630Hardware Description
1631~~~~~~~~~~~~~~~~~~~~
1632
1633The hardware descriptor (:c:type:`struct snd_pcm_hardware
1634<snd_pcm_hardware>`) contains the definitions of the fundamental
1635hardware configuration. Above all, you'll need to define this in the
1636`PCM open callback`_. Note that the runtime instance holds the copy of
1637the descriptor, not the pointer to the existing descriptor. That is,
1638in the open callback, you can modify the copied descriptor
1639(``runtime->hw``) as you need. For example, if the maximum number of
1640channels is 1 only on some chip models, you can still use the same
1641hardware descriptor and change the channels_max later:
1642
1643::
1644
1645 struct snd_pcm_runtime *runtime = substream->runtime;
1646 ...
1647 runtime->hw = snd_mychip_playback_hw; /* common definition */
1648 if (chip->model == VERY_OLD_ONE)
1649 runtime->hw.channels_max = 1;
1650
1651Typically, you'll have a hardware descriptor as below:
1652
1653::
1654
1655 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1656 .info = (SNDRV_PCM_INFO_MMAP |
1657 SNDRV_PCM_INFO_INTERLEAVED |
1658 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1659 SNDRV_PCM_INFO_MMAP_VALID),
1660 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1661 .rates = SNDRV_PCM_RATE_8000_48000,
1662 .rate_min = 8000,
1663 .rate_max = 48000,
1664 .channels_min = 2,
1665 .channels_max = 2,
1666 .buffer_bytes_max = 32768,
1667 .period_bytes_min = 4096,
1668 .period_bytes_max = 32768,
1669 .periods_min = 1,
1670 .periods_max = 1024,
1671 };
1672
1673- The ``info`` field contains the type and capabilities of this
1674 pcm. The bit flags are defined in ``<sound/asound.h>`` as
1675 ``SNDRV_PCM_INFO_XXX``. Here, at least, you have to specify whether
1676 the mmap is supported and which interleaved format is
1677 supported. When the hardware supports mmap, add the
1678 ``SNDRV_PCM_INFO_MMAP`` flag here. When the hardware supports the
1679 interleaved or the non-interleaved formats,
1680 ``SNDRV_PCM_INFO_INTERLEAVED`` or ``SNDRV_PCM_INFO_NONINTERLEAVED``
1681 flag must be set, respectively. If both are supported, you can set
1682 both, too.
1683
1684 In the above example, ``MMAP_VALID`` and ``BLOCK_TRANSFER`` are
1685 specified for the OSS mmap mode. Usually both are set. Of course,
1686 ``MMAP_VALID`` is set only if the mmap is really supported.
1687
1688 The other possible flags are ``SNDRV_PCM_INFO_PAUSE`` and
1689 ``SNDRV_PCM_INFO_RESUME``. The ``PAUSE`` bit means that the pcm
1690 supports the “pause” operation, while the ``RESUME`` bit means that
1691 the pcm supports the full “suspend/resume” operation. If the
1692 ``PAUSE`` flag is set, the ``trigger`` callback below must handle
1693 the corresponding (pause push/release) commands. The suspend/resume
1694 trigger commands can be defined even without the ``RESUME``
1695 flag. See `Power Management`_ section for details.
1696
1697 When the PCM substreams can be synchronized (typically,
1698 synchronized start/stop of a playback and a capture streams), you
1699 can give ``SNDRV_PCM_INFO_SYNC_START``, too. In this case, you'll
1700 need to check the linked-list of PCM substreams in the trigger
1701 callback. This will be described in the later section.
1702
1703- ``formats`` field contains the bit-flags of supported formats
1704 (``SNDRV_PCM_FMTBIT_XXX``). If the hardware supports more than one
1705 format, give all or'ed bits. In the example above, the signed 16bit
1706 little-endian format is specified.
1707
1708- ``rates`` field contains the bit-flags of supported rates
1709 (``SNDRV_PCM_RATE_XXX``). When the chip supports continuous rates,
1710 pass ``CONTINUOUS`` bit additionally. The pre-defined rate bits are
1711 provided only for typical rates. If your chip supports
1712 unconventional rates, you need to add the ``KNOT`` bit and set up
1713 the hardware constraint manually (explained later).
1714
1715- ``rate_min`` and ``rate_max`` define the minimum and maximum sample
1716 rate. This should correspond somehow to ``rates`` bits.
1717
1718- ``channel_min`` and ``channel_max`` define, as you might already
1719 expected, the minimum and maximum number of channels.
1720
1721- ``buffer_bytes_max`` defines the maximum buffer size in
1722 bytes. There is no ``buffer_bytes_min`` field, since it can be
1723 calculated from the minimum period size and the minimum number of
1724 periods. Meanwhile, ``period_bytes_min`` and define the minimum and
1725 maximum size of the period in bytes. ``periods_max`` and
1726 ``periods_min`` define the maximum and minimum number of periods in
1727 the buffer.
1728
1729 The “period” is a term that corresponds to a fragment in the OSS
1730 world. The period defines the size at which a PCM interrupt is
1731 generated. This size strongly depends on the hardware. Generally,
1732 the smaller period size will give you more interrupts, that is,
1733 more controls. In the case of capture, this size defines the input
1734 latency. On the other hand, the whole buffer size defines the
1735 output latency for the playback direction.
1736
1737- There is also a field ``fifo_size``. This specifies the size of the
1738 hardware FIFO, but currently it is neither used in the driver nor
1739 in the alsa-lib. So, you can ignore this field.
1740
1741PCM Configurations
1742~~~~~~~~~~~~~~~~~~
1743
1744Ok, let's go back again to the PCM runtime records. The most
1745frequently referred records in the runtime instance are the PCM
1746configurations. The PCM configurations are stored in the runtime
1747instance after the application sends ``hw_params`` data via
1748alsa-lib. There are many fields copied from hw_params and sw_params
1749structs. For example, ``format`` holds the format type chosen by the
1750application. This field contains the enum value
1751``SNDRV_PCM_FORMAT_XXX``.
1752
1753One thing to be noted is that the configured buffer and period sizes
1754are stored in “frames” in the runtime. In the ALSA world, ``1 frame =
1755channels \* samples-size``. For conversion between frames and bytes,
1756you can use the :c:func:`frames_to_bytes()` and
1757:c:func:`bytes_to_frames()` helper functions.
1758
1759::
1760
1761 period_bytes = frames_to_bytes(runtime, runtime->period_size);
1762
1763Also, many software parameters (sw_params) are stored in frames, too.
1764Please check the type of the field. ``snd_pcm_uframes_t`` is for the
1765frames as unsigned integer while ``snd_pcm_sframes_t`` is for the
1766frames as signed integer.
1767
1768DMA Buffer Information
1769~~~~~~~~~~~~~~~~~~~~~~
1770
1771The DMA buffer is defined by the following four fields, ``dma_area``,
1772``dma_addr``, ``dma_bytes`` and ``dma_private``. The ``dma_area``
1773holds the buffer pointer (the logical address). You can call
1774:c:func:`memcpy()` from/to this pointer. Meanwhile, ``dma_addr`` holds
1775the physical address of the buffer. This field is specified only when
1776the buffer is a linear buffer. ``dma_bytes`` holds the size of buffer
1777in bytes. ``dma_private`` is used for the ALSA DMA allocator.
1778
1779If you use a standard ALSA function,
1780:c:func:`snd_pcm_lib_malloc_pages()`, for allocating the buffer,
1781these fields are set by the ALSA middle layer, and you should *not*
1782change them by yourself. You can read them but not write them. On the
1783other hand, if you want to allocate the buffer by yourself, you'll
1784need to manage it in hw_params callback. At least, ``dma_bytes`` is
1785mandatory. ``dma_area`` is necessary when the buffer is mmapped. If
1786your driver doesn't support mmap, this field is not
1787necessary. ``dma_addr`` is also optional. You can use dma_private as
1788you like, too.
1789
1790Running Status
1791~~~~~~~~~~~~~~
1792
1793The running status can be referred via ``runtime->status``. This is
1794the pointer to the :c:type:`struct snd_pcm_mmap_status
1795<snd_pcm_mmap_status>` record. For example, you can get the current
1796DMA hardware pointer via ``runtime->status->hw_ptr``.
1797
1798The DMA application pointer can be referred via ``runtime->control``,
1799which points to the :c:type:`struct snd_pcm_mmap_control
1800<snd_pcm_mmap_control>` record. However, accessing directly to
1801this value is not recommended.
1802
1803Private Data
1804~~~~~~~~~~~~
1805
1806You can allocate a record for the substream and store it in
1807``runtime->private_data``. Usually, this is done in the `PCM open
1808callback`_. Don't mix this with ``pcm->private_data``. The
1809``pcm->private_data`` usually points to the chip instance assigned
1810statically at the creation of PCM, while the ``runtime->private_data``
1811points to a dynamic data structure created at the PCM open
1812callback.
1813
1814::
1815
1816 static int snd_xxx_open(struct snd_pcm_substream *substream)
1817 {
1818 struct my_pcm_data *data;
1819 ....
1820 data = kmalloc(sizeof(*data), GFP_KERNEL);
1821 substream->runtime->private_data = data;
1822 ....
1823 }
1824
1825
1826The allocated object must be released in the `close callback`_.
1827
1828Operators
1829---------
1830
1831OK, now let me give details about each pcm callback (``ops``). In
1832general, every callback must return 0 if successful, or a negative
1833error number such as ``-EINVAL``. To choose an appropriate error
1834number, it is advised to check what value other parts of the kernel
1835return when the same kind of request fails.
1836
1837The callback function takes at least the argument with :c:type:`struct
1838snd_pcm_substream <snd_pcm_substream>` pointer. To retrieve the chip
1839record from the given substream instance, you can use the following
1840macro.
1841
1842::
1843
1844 int xxx() {
1845 struct mychip *chip = snd_pcm_substream_chip(substream);
1846 ....
1847 }
1848
1849The macro reads ``substream->private_data``, which is a copy of
1850``pcm->private_data``. You can override the former if you need to
1851assign different data records per PCM substream. For example, the
1852cmi8330 driver assigns different ``private_data`` for playback and
1853capture directions, because it uses two different codecs (SB- and
1854AD-compatible) for different directions.
1855
1856PCM open callback
1857~~~~~~~~~~~~~~~~~
1858
1859::
1860
1861 static int snd_xxx_open(struct snd_pcm_substream *substream);
1862
1863This is called when a pcm substream is opened.
1864
1865At least, here you have to initialize the ``runtime->hw``
1866record. Typically, this is done by like this:
1867
1868::
1869
1870 static int snd_xxx_open(struct snd_pcm_substream *substream)
1871 {
1872 struct mychip *chip = snd_pcm_substream_chip(substream);
1873 struct snd_pcm_runtime *runtime = substream->runtime;
1874
1875 runtime->hw = snd_mychip_playback_hw;
1876 return 0;
1877 }
1878
1879where ``snd_mychip_playback_hw`` is the pre-defined hardware
1880description.
1881
1882You can allocate a private data in this callback, as described in
1883`Private Data`_ section.
1884
1885If the hardware configuration needs more constraints, set the hardware
1886constraints here, too. See Constraints_ for more details.
1887
1888close callback
1889~~~~~~~~~~~~~~
1890
1891::
1892
1893 static int snd_xxx_close(struct snd_pcm_substream *substream);
1894
1895
1896Obviously, this is called when a pcm substream is closed.
1897
1898Any private instance for a pcm substream allocated in the ``open``
1899callback will be released here.
1900
1901::
1902
1903 static int snd_xxx_close(struct snd_pcm_substream *substream)
1904 {
1905 ....
1906 kfree(substream->runtime->private_data);
1907 ....
1908 }
1909
1910ioctl callback
1911~~~~~~~~~~~~~~
1912
1913This is used for any special call to pcm ioctls. But usually you can
1914pass a generic ioctl callback, :c:func:`snd_pcm_lib_ioctl()`.
1915
1916hw_params callback
1917~~~~~~~~~~~~~~~~~~~
1918
1919::
1920
1921 static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
1922 struct snd_pcm_hw_params *hw_params);
1923
1924This is called when the hardware parameter (``hw_params``) is set up
1925by the application, that is, once when the buffer size, the period
1926size, the format, etc. are defined for the pcm substream.
1927
1928Many hardware setups should be done in this callback, including the
1929allocation of buffers.
1930
1931Parameters to be initialized are retrieved by
1932:c:func:`params_xxx()` macros. To allocate buffer, you can call a
1933helper function,
1934
1935::
1936
1937 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
1938
1939:c:func:`snd_pcm_lib_malloc_pages()` is available only when the
1940DMA buffers have been pre-allocated. See the section `Buffer Types`_
1941for more details.
1942
1943Note that this and ``prepare`` callbacks may be called multiple times
1944per initialization. For example, the OSS emulation may call these
1945callbacks at each change via its ioctl.
1946
1947Thus, you need to be careful not to allocate the same buffers many
1948times, which will lead to memory leaks! Calling the helper function
1949above many times is OK. It will release the previous buffer
1950automatically when it was already allocated.
1951
1952Another note is that this callback is non-atomic (schedulable) as
1953default, i.e. when no ``nonatomic`` flag set. This is important,
1954because the ``trigger`` callback is atomic (non-schedulable). That is,
1955mutexes or any schedule-related functions are not available in
1956``trigger`` callback. Please see the subsection Atomicity_ for
1957details.
1958
1959hw_free callback
1960~~~~~~~~~~~~~~~~~
1961
1962::
1963
1964 static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
1965
1966This is called to release the resources allocated via
1967``hw_params``. For example, releasing the buffer via
1968:c:func:`snd_pcm_lib_malloc_pages()` is done by calling the
1969following:
1970
1971::
1972
1973 snd_pcm_lib_free_pages(substream);
1974
1975This function is always called before the close callback is called.
1976Also, the callback may be called multiple times, too. Keep track
1977whether the resource was already released.
1978
1979prepare callback
1980~~~~~~~~~~~~~~~~
1981
1982::
1983
1984 static int snd_xxx_prepare(struct snd_pcm_substream *substream);
1985
1986This callback is called when the pcm is “prepared”. You can set the
1987format type, sample rate, etc. here. The difference from ``hw_params``
1988is that the ``prepare`` callback will be called each time
1989:c:func:`snd_pcm_prepare()` is called, i.e. when recovering after
1990underruns, etc.
1991
1992Note that this callback is now non-atomic. You can use
1993schedule-related functions safely in this callback.
1994
1995In this and the following callbacks, you can refer to the values via
1996the runtime record, ``substream->runtime``. For example, to get the
1997current rate, format or channels, access to ``runtime->rate``,
1998``runtime->format`` or ``runtime->channels``, respectively. The
1999physical address of the allocated buffer is set to
2000``runtime->dma_area``. The buffer and period sizes are in
2001``runtime->buffer_size`` and ``runtime->period_size``, respectively.
2002
2003Be careful that this callback will be called many times at each setup,
2004too.
2005
2006trigger callback
2007~~~~~~~~~~~~~~~~
2008
2009::
2010
2011 static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
2012
2013This is called when the pcm is started, stopped or paused.
2014
2015Which action is specified in the second argument,
2016``SNDRV_PCM_TRIGGER_XXX`` in ``<sound/pcm.h>``. At least, the ``START``
2017and ``STOP`` commands must be defined in this callback.
2018
2019::
2020
2021 switch (cmd) {
2022 case SNDRV_PCM_TRIGGER_START:
2023 /* do something to start the PCM engine */
2024 break;
2025 case SNDRV_PCM_TRIGGER_STOP:
2026 /* do something to stop the PCM engine */
2027 break;
2028 default:
2029 return -EINVAL;
2030 }
2031
2032When the pcm supports the pause operation (given in the info field of
2033the hardware table), the ``PAUSE_PUSH`` and ``PAUSE_RELEASE`` commands
2034must be handled here, too. The former is the command to pause the pcm,
2035and the latter to restart the pcm again.
2036
2037When the pcm supports the suspend/resume operation, regardless of full
2038or partial suspend/resume support, the ``SUSPEND`` and ``RESUME``
2039commands must be handled, too. These commands are issued when the
2040power-management status is changed. Obviously, the ``SUSPEND`` and
2041``RESUME`` commands suspend and resume the pcm substream, and usually,
2042they are identical to the ``STOP`` and ``START`` commands, respectively.
2043See the `Power Management`_ section for details.
2044
2045As mentioned, this callback is atomic as default unless ``nonatomic``
2046flag set, and you cannot call functions which may sleep. The
2047``trigger`` callback should be as minimal as possible, just really
2048triggering the DMA. The other stuff should be initialized
2049``hw_params`` and ``prepare`` callbacks properly beforehand.
2050
2051pointer callback
2052~~~~~~~~~~~~~~~~
2053
2054::
2055
2056 static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
2057
2058This callback is called when the PCM middle layer inquires the current
2059hardware position on the buffer. The position must be returned in
2060frames, ranging from 0 to ``buffer_size - 1``.
2061
2062This is called usually from the buffer-update routine in the pcm
2063middle layer, which is invoked when :c:func:`snd_pcm_period_elapsed()`
2064is called in the interrupt routine. Then the pcm middle layer updates
2065the position and calculates the available space, and wakes up the
2066sleeping poll threads, etc.
2067
2068This callback is also atomic as default.
2069
f7a47817
TI
2070copy_user, copy_kernel and fill_silence ops
2071~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7ddedebb
TI
2072
2073These callbacks are not mandatory, and can be omitted in most cases.
2074These callbacks are used when the hardware buffer cannot be in the
2075normal memory space. Some chips have their own buffer on the hardware
2076which is not mappable. In such a case, you have to transfer the data
2077manually from the memory buffer to the hardware buffer. Or, if the
2078buffer is non-contiguous on both physical and virtual memory spaces,
2079these callbacks must be defined, too.
2080
2081If these two callbacks are defined, copy and set-silence operations
2082are done by them. The detailed will be described in the later section
2083`Buffer and Memory Management`_.
2084
2085ack callback
2086~~~~~~~~~~~~
2087
2088This callback is also not mandatory. This callback is called when the
2089``appl_ptr`` is updated in read or write operations. Some drivers like
2090emu10k1-fx and cs46xx need to track the current ``appl_ptr`` for the
2091internal buffer, and this callback is useful only for such a purpose.
2092
2093This callback is atomic as default.
2094
2095page callback
2096~~~~~~~~~~~~~
2097
2098This callback is optional too. This callback is used mainly for
2099non-contiguous buffers. The mmap calls this callback to get the page
2100address. Some examples will be explained in the later section `Buffer
2101and Memory Management`_, too.
2102
f90afe79
TI
2103mmap calllback
2104~~~~~~~~~~~~~~
2105
2106This is another optional callback for controlling mmap behavior.
2107Once when defined, PCM core calls this callback when a page is
2108memory-mapped instead of dealing via the standard helper.
2109If you need special handling (due to some architecture or
2110device-specific issues), implement everything here as you like.
2111
2112
7ddedebb
TI
2113PCM Interrupt Handler
2114---------------------
2115
2116The rest of pcm stuff is the PCM interrupt handler. The role of PCM
2117interrupt handler in the sound driver is to update the buffer position
2118and to tell the PCM middle layer when the buffer position goes across
2119the prescribed period size. To inform this, call the
2120:c:func:`snd_pcm_period_elapsed()` function.
2121
2122There are several types of sound chips to generate the interrupts.
2123
2124Interrupts at the period (fragment) boundary
2125~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2126
2127This is the most frequently found type: the hardware generates an
2128interrupt at each period boundary. In this case, you can call
2129:c:func:`snd_pcm_period_elapsed()` at each interrupt.
2130
2131:c:func:`snd_pcm_period_elapsed()` takes the substream pointer as
2132its argument. Thus, you need to keep the substream pointer accessible
2133from the chip instance. For example, define ``substream`` field in the
2134chip record to hold the current running substream pointer, and set the
2135pointer value at ``open`` callback (and reset at ``close`` callback).
2136
2137If you acquire a spinlock in the interrupt handler, and the lock is used
2138in other pcm callbacks, too, then you have to release the lock before
2139calling :c:func:`snd_pcm_period_elapsed()`, because
2140:c:func:`snd_pcm_period_elapsed()` calls other pcm callbacks
2141inside.
2142
2143Typical code would be like:
2144
2145::
2146
2147
2148 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
2149 {
2150 struct mychip *chip = dev_id;
2151 spin_lock(&chip->lock);
2152 ....
2153 if (pcm_irq_invoked(chip)) {
2154 /* call updater, unlock before it */
2155 spin_unlock(&chip->lock);
2156 snd_pcm_period_elapsed(chip->substream);
2157 spin_lock(&chip->lock);
2158 /* acknowledge the interrupt if necessary */
2159 }
2160 ....
2161 spin_unlock(&chip->lock);
2162 return IRQ_HANDLED;
2163 }
2164
2165
2166
2167High frequency timer interrupts
2168~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2169
2170This happens when the hardware doesn't generate interrupts at the period
2171boundary but issues timer interrupts at a fixed timer rate (e.g. es1968
2172or ymfpci drivers). In this case, you need to check the current hardware
2173position and accumulate the processed sample length at each interrupt.
2174When the accumulated size exceeds the period size, call
2175:c:func:`snd_pcm_period_elapsed()` and reset the accumulator.
2176
2177Typical code would be like the following.
2178
2179::
2180
2181
2182 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
2183 {
2184 struct mychip *chip = dev_id;
2185 spin_lock(&chip->lock);
2186 ....
2187 if (pcm_irq_invoked(chip)) {
2188 unsigned int last_ptr, size;
2189 /* get the current hardware pointer (in frames) */
2190 last_ptr = get_hw_ptr(chip);
2191 /* calculate the processed frames since the
2192 * last update
2193 */
2194 if (last_ptr < chip->last_ptr)
2195 size = runtime->buffer_size + last_ptr
2196 - chip->last_ptr;
2197 else
2198 size = last_ptr - chip->last_ptr;
2199 /* remember the last updated point */
2200 chip->last_ptr = last_ptr;
2201 /* accumulate the size */
2202 chip->size += size;
2203 /* over the period boundary? */
2204 if (chip->size >= runtime->period_size) {
2205 /* reset the accumulator */
2206 chip->size %= runtime->period_size;
2207 /* call updater */
2208 spin_unlock(&chip->lock);
2209 snd_pcm_period_elapsed(substream);
2210 spin_lock(&chip->lock);
2211 }
2212 /* acknowledge the interrupt if necessary */
2213 }
2214 ....
2215 spin_unlock(&chip->lock);
2216 return IRQ_HANDLED;
2217 }
2218
2219
2220
2221On calling :c:func:`snd_pcm_period_elapsed()`
2222~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2223
2224In both cases, even if more than one period are elapsed, you don't have
2225to call :c:func:`snd_pcm_period_elapsed()` many times. Call only
2226once. And the pcm layer will check the current hardware pointer and
2227update to the latest status.
2228
2229Atomicity
2230---------
2231
2232One of the most important (and thus difficult to debug) problems in
2233kernel programming are race conditions. In the Linux kernel, they are
2234usually avoided via spin-locks, mutexes or semaphores. In general, if a
2235race condition can happen in an interrupt handler, it has to be managed
2236atomically, and you have to use a spinlock to protect the critical
2237session. If the critical section is not in interrupt handler code and if
2238taking a relatively long time to execute is acceptable, you should use
2239mutexes or semaphores instead.
2240
2241As already seen, some pcm callbacks are atomic and some are not. For
2242example, the ``hw_params`` callback is non-atomic, while ``trigger``
2243callback is atomic. This means, the latter is called already in a
2244spinlock held by the PCM middle layer. Please take this atomicity into
2245account when you choose a locking scheme in the callbacks.
2246
2247In the atomic callbacks, you cannot use functions which may call
2248:c:func:`schedule()` or go to :c:func:`sleep()`. Semaphores and
2249mutexes can sleep, and hence they cannot be used inside the atomic
2250callbacks (e.g. ``trigger`` callback). To implement some delay in such a
2251callback, please use :c:func:`udelay()` or :c:func:`mdelay()`.
2252
2253All three atomic callbacks (trigger, pointer, and ack) are called with
2254local interrupts disabled.
2255
2256The recent changes in PCM core code, however, allow all PCM operations
2257to be non-atomic. This assumes that the all caller sides are in
2258non-atomic contexts. For example, the function
2259:c:func:`snd_pcm_period_elapsed()` is called typically from the
2260interrupt handler. But, if you set up the driver to use a threaded
2261interrupt handler, this call can be in non-atomic context, too. In such
2262a case, you can set ``nonatomic`` filed of :c:type:`struct snd_pcm
2263<snd_pcm>` object after creating it. When this flag is set, mutex
2264and rwsem are used internally in the PCM core instead of spin and
2265rwlocks, so that you can call all PCM functions safely in a non-atomic
2266context.
2267
2268Constraints
2269-----------
2270
2271If your chip supports unconventional sample rates, or only the limited
2272samples, you need to set a constraint for the condition.
2273
2274For example, in order to restrict the sample rates in the some supported
2275values, use :c:func:`snd_pcm_hw_constraint_list()`. You need to
2276call this function in the open callback.
2277
2278::
2279
2280 static unsigned int rates[] =
2281 {4000, 10000, 22050, 44100};
2282 static struct snd_pcm_hw_constraint_list constraints_rates = {
2283 .count = ARRAY_SIZE(rates),
2284 .list = rates,
2285 .mask = 0,
2286 };
2287
2288 static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
2289 {
2290 int err;
2291 ....
2292 err = snd_pcm_hw_constraint_list(substream->runtime, 0,
2293 SNDRV_PCM_HW_PARAM_RATE,
2294 &constraints_rates);
2295 if (err < 0)
2296 return err;
2297 ....
2298 }
2299
2300
2301
2302There are many different constraints. Look at ``sound/pcm.h`` for a
2303complete list. You can even define your own constraint rules. For
2304example, let's suppose my_chip can manage a substream of 1 channel if
2305and only if the format is ``S16_LE``, otherwise it supports any format
2306specified in the :c:type:`struct snd_pcm_hardware
2307<snd_pcm_hardware>` structure (or in any other
2308constraint_list). You can build a rule like this:
2309
2310::
2311
2312 static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
2313 struct snd_pcm_hw_rule *rule)
2314 {
2315 struct snd_interval *c = hw_param_interval(params,
2316 SNDRV_PCM_HW_PARAM_CHANNELS);
2317 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2318 struct snd_interval ch;
2319
2320 snd_interval_any(&ch);
2321 if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
2322 ch.min = ch.max = 1;
2323 ch.integer = 1;
2324 return snd_interval_refine(c, &ch);
2325 }
2326 return 0;
2327 }
2328
2329
2330Then you need to call this function to add your rule:
2331
2332::
2333
2334 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2335 hw_rule_channels_by_format, NULL,
2336 SNDRV_PCM_HW_PARAM_FORMAT, -1);
2337
2338The rule function is called when an application sets the PCM format, and
2339it refines the number of channels accordingly. But an application may
2340set the number of channels before setting the format. Thus you also need
2341to define the inverse rule:
2342
2343::
2344
2345 static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
2346 struct snd_pcm_hw_rule *rule)
2347 {
2348 struct snd_interval *c = hw_param_interval(params,
2349 SNDRV_PCM_HW_PARAM_CHANNELS);
2350 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2351 struct snd_mask fmt;
2352
2353 snd_mask_any(&fmt); /* Init the struct */
2354 if (c->min < 2) {
2355 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
2356 return snd_mask_refine(f, &fmt);
2357 }
2358 return 0;
2359 }
2360
2361
2362... and in the open callback:
2363
2364::
2365
2366 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2367 hw_rule_format_by_channels, NULL,
2368 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
2369
f90afe79
TI
2370One typical usage of the hw constraints is to align the buffer size
2371with the period size. As default, ALSA PCM core doesn't enforce the
2372buffer size to be aligned with the period size. For example, it'd be
2373possible to have a combination like 256 period bytes with 999 buffer
2374bytes.
2375
2376Many device chips, however, require the buffer to be a multiple of
2377periods. In such a case, call
2378:c:func:`snd_pcm_hw_constraint_integer()` for
2379``SNDRV_PCM_HW_PARAM_PERIODS``.
2380
2381::
2382
2383 snd_pcm_hw_constraint_integer(substream->runtime,
2384 SNDRV_PCM_HW_PARAM_PERIODS);
2385
2386This assures that the number of periods is integer, hence the buffer
2387size is aligned with the period size.
2388
2389The hw constraint is a very much powerful mechanism to define the
2390preferred PCM configuration, and there are relevant helpers.
7ddedebb
TI
2391I won't give more details here, rather I would like to say, “Luke, use
2392the source.”
2393
2394Control Interface
2395=================
2396
2397General
2398-------
2399
2400The control interface is used widely for many switches, sliders, etc.
2401which are accessed from user-space. Its most important use is the mixer
2402interface. In other words, since ALSA 0.9.x, all the mixer stuff is
2403implemented on the control kernel API.
2404
2405ALSA has a well-defined AC97 control module. If your chip supports only
2406the AC97 and nothing else, you can skip this section.
2407
2408The control API is defined in ``<sound/control.h>``. Include this file
2409if you want to add your own controls.
2410
2411Definition of Controls
2412----------------------
2413
2414To create a new control, you need to define the following three
2415callbacks: ``info``, ``get`` and ``put``. Then, define a
2416:c:type:`struct snd_kcontrol_new <snd_kcontrol_new>` record, such as:
2417
2418::
2419
2420
2421 static struct snd_kcontrol_new my_control = {
2422 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2423 .name = "PCM Playback Switch",
2424 .index = 0,
2425 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
2426 .private_value = 0xffff,
2427 .info = my_control_info,
2428 .get = my_control_get,
2429 .put = my_control_put
2430 };
2431
2432
2433The ``iface`` field specifies the control type,
2434``SNDRV_CTL_ELEM_IFACE_XXX``, which is usually ``MIXER``. Use ``CARD``
2435for global controls that are not logically part of the mixer. If the
2436control is closely associated with some specific device on the sound
2437card, use ``HWDEP``, ``PCM``, ``RAWMIDI``, ``TIMER``, or ``SEQUENCER``,
2438and specify the device number with the ``device`` and ``subdevice``
2439fields.
2440
2441The ``name`` is the name identifier string. Since ALSA 0.9.x, the
2442control name is very important, because its role is classified from
2443its name. There are pre-defined standard control names. The details
2444are described in the `Control Names`_ subsection.
2445
2446The ``index`` field holds the index number of this control. If there
2447are several different controls with the same name, they can be
2448distinguished by the index number. This is the case when several
2449codecs exist on the card. If the index is zero, you can omit the
2450definition above.
2451
2452The ``access`` field contains the access type of this control. Give
2453the combination of bit masks, ``SNDRV_CTL_ELEM_ACCESS_XXX``,
2454there. The details will be explained in the `Access Flags`_
2455subsection.
2456
2457The ``private_value`` field contains an arbitrary long integer value
2458for this record. When using the generic ``info``, ``get`` and ``put``
2459callbacks, you can pass a value through this field. If several small
2460numbers are necessary, you can combine them in bitwise. Or, it's
2461possible to give a pointer (casted to unsigned long) of some record to
2462this field, too.
2463
2464The ``tlv`` field can be used to provide metadata about the control;
2465see the `Metadata`_ subsection.
2466
2467The other three are `Control Callbacks`_.
2468
2469Control Names
2470-------------
2471
2472There are some standards to define the control names. A control is
2473usually defined from the three parts as “SOURCE DIRECTION FUNCTION”.
2474
2475The first, ``SOURCE``, specifies the source of the control, and is a
2476string such as “Master”, “PCM”, “CD” and “Line”. There are many
2477pre-defined sources.
2478
2479The second, ``DIRECTION``, is one of the following strings according to
2480the direction of the control: “Playback”, “Capture”, “Bypass Playback”
2481and “Bypass Capture”. Or, it can be omitted, meaning both playback and
2482capture directions.
2483
2484The third, ``FUNCTION``, is one of the following strings according to
2485the function of the control: “Switch”, “Volume” and “Route”.
2486
2487The example of control names are, thus, “Master Capture Switch” or “PCM
2488Playback Volume”.
2489
2490There are some exceptions:
2491
2492Global capture and playback
2493~~~~~~~~~~~~~~~~~~~~~~~~~~~
2494
2495“Capture Source”, “Capture Switch” and “Capture Volume” are used for the
2496global capture (input) source, switch and volume. Similarly, “Playback
2497Switch” and “Playback Volume” are used for the global output gain switch
2498and volume.
2499
2500Tone-controls
2501~~~~~~~~~~~~~
2502
2503tone-control switch and volumes are specified like “Tone Control - XXX”,
2504e.g. “Tone Control - Switch”, “Tone Control - Bass”, “Tone Control -
2505Center”.
2506
25073D controls
2508~~~~~~~~~~~
2509
25103D-control switches and volumes are specified like “3D Control - XXX”,
2511e.g. “3D Control - Switch”, “3D Control - Center”, “3D Control - Space”.
2512
2513Mic boost
2514~~~~~~~~~
2515
2516Mic-boost switch is set as “Mic Boost” or “Mic Boost (6dB)”.
2517
2518More precise information can be found in
f495ae3c 2519``Documentation/sound/designs/control-names.rst``.
7ddedebb
TI
2520
2521Access Flags
2522------------
2523
2524The access flag is the bitmask which specifies the access type of the
2525given control. The default access type is
2526``SNDRV_CTL_ELEM_ACCESS_READWRITE``, which means both read and write are
2527allowed to this control. When the access flag is omitted (i.e. = 0), it
2528is considered as ``READWRITE`` access as default.
2529
2530When the control is read-only, pass ``SNDRV_CTL_ELEM_ACCESS_READ``
2531instead. In this case, you don't have to define the ``put`` callback.
2532Similarly, when the control is write-only (although it's a rare case),
2533you can use the ``WRITE`` flag instead, and you don't need the ``get``
2534callback.
2535
2536If the control value changes frequently (e.g. the VU meter),
2537``VOLATILE`` flag should be given. This means that the control may be
2538changed without `Change notification`_. Applications should poll such
2539a control constantly.
2540
2541When the control is inactive, set the ``INACTIVE`` flag, too. There are
2542``LOCK`` and ``OWNER`` flags to change the write permissions.
2543
2544Control Callbacks
2545-----------------
2546
2547info callback
2548~~~~~~~~~~~~~
2549
2550The ``info`` callback is used to get detailed information on this
2551control. This must store the values of the given :c:type:`struct
2552snd_ctl_elem_info <snd_ctl_elem_info>` object. For example,
2553for a boolean control with a single element:
2554
2555::
2556
2557
2558 static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
2559 struct snd_ctl_elem_info *uinfo)
2560 {
2561 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2562 uinfo->count = 1;
2563 uinfo->value.integer.min = 0;
2564 uinfo->value.integer.max = 1;
2565 return 0;
2566 }
2567
2568
2569
2570The ``type`` field specifies the type of the control. There are
2571``BOOLEAN``, ``INTEGER``, ``ENUMERATED``, ``BYTES``, ``IEC958`` and
2572``INTEGER64``. The ``count`` field specifies the number of elements in
2573this control. For example, a stereo volume would have count = 2. The
2574``value`` field is a union, and the values stored are depending on the
2575type. The boolean and integer types are identical.
2576
2577The enumerated type is a bit different from others. You'll need to set
2578the string for the currently given item index.
2579
2580::
2581
2582 static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
2583 struct snd_ctl_elem_info *uinfo)
2584 {
2585 static char *texts[4] = {
2586 "First", "Second", "Third", "Fourth"
2587 };
2588 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2589 uinfo->count = 1;
2590 uinfo->value.enumerated.items = 4;
2591 if (uinfo->value.enumerated.item > 3)
2592 uinfo->value.enumerated.item = 3;
2593 strcpy(uinfo->value.enumerated.name,
2594 texts[uinfo->value.enumerated.item]);
2595 return 0;
2596 }
2597
2598The above callback can be simplified with a helper function,
2599:c:func:`snd_ctl_enum_info()`. The final code looks like below.
2600(You can pass ``ARRAY_SIZE(texts)`` instead of 4 in the third argument;
2601it's a matter of taste.)
2602
2603::
2604
2605 static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
2606 struct snd_ctl_elem_info *uinfo)
2607 {
2608 static char *texts[4] = {
2609 "First", "Second", "Third", "Fourth"
2610 };
2611 return snd_ctl_enum_info(uinfo, 1, 4, texts);
2612 }
2613
2614
2615Some common info callbacks are available for your convenience:
2616:c:func:`snd_ctl_boolean_mono_info()` and
2617:c:func:`snd_ctl_boolean_stereo_info()`. Obviously, the former
2618is an info callback for a mono channel boolean item, just like
2619:c:func:`snd_myctl_mono_info()` above, and the latter is for a
2620stereo channel boolean item.
2621
2622get callback
2623~~~~~~~~~~~~
2624
2625This callback is used to read the current value of the control and to
2626return to user-space.
2627
2628For example,
2629
2630::
2631
2632
2633 static int snd_myctl_get(struct snd_kcontrol *kcontrol,
2634 struct snd_ctl_elem_value *ucontrol)
2635 {
2636 struct mychip *chip = snd_kcontrol_chip(kcontrol);
2637 ucontrol->value.integer.value[0] = get_some_value(chip);
2638 return 0;
2639 }
2640
2641
2642
2643The ``value`` field depends on the type of control as well as on the
2644info callback. For example, the sb driver uses this field to store the
2645register offset, the bit-shift and the bit-mask. The ``private_value``
2646field is set as follows:
2647
2648::
2649
2650 .private_value = reg | (shift << 16) | (mask << 24)
2651
2652and is retrieved in callbacks like
2653
2654::
2655
2656 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
2657 struct snd_ctl_elem_value *ucontrol)
2658 {
2659 int reg = kcontrol->private_value & 0xff;
2660 int shift = (kcontrol->private_value >> 16) & 0xff;
2661 int mask = (kcontrol->private_value >> 24) & 0xff;
2662 ....
2663 }
2664
2665In the ``get`` callback, you have to fill all the elements if the
2666control has more than one elements, i.e. ``count > 1``. In the example
2667above, we filled only one element (``value.integer.value[0]``) since
2668it's assumed as ``count = 1``.
2669
2670put callback
2671~~~~~~~~~~~~
2672
2673This callback is used to write a value from user-space.
2674
2675For example,
2676
2677::
2678
2679
2680 static int snd_myctl_put(struct snd_kcontrol *kcontrol,
2681 struct snd_ctl_elem_value *ucontrol)
2682 {
2683 struct mychip *chip = snd_kcontrol_chip(kcontrol);
2684 int changed = 0;
2685 if (chip->current_value !=
2686 ucontrol->value.integer.value[0]) {
2687 change_current_value(chip,
2688 ucontrol->value.integer.value[0]);
2689 changed = 1;
2690 }
2691 return changed;
2692 }
2693
2694
2695
2696As seen above, you have to return 1 if the value is changed. If the
2697value is not changed, return 0 instead. If any fatal error happens,
2698return a negative error code as usual.
2699
2700As in the ``get`` callback, when the control has more than one
2701elements, all elements must be evaluated in this callback, too.
2702
2703Callbacks are not atomic
2704~~~~~~~~~~~~~~~~~~~~~~~~
2705
2706All these three callbacks are basically not atomic.
2707
2708Control Constructor
2709-------------------
2710
2711When everything is ready, finally we can create a new control. To create
2712a control, there are two functions to be called,
2713:c:func:`snd_ctl_new1()` and :c:func:`snd_ctl_add()`.
2714
2715In the simplest way, you can do like this:
2716
2717::
2718
2719 err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
2720 if (err < 0)
2721 return err;
2722
2723where ``my_control`` is the :c:type:`struct snd_kcontrol_new
2724<snd_kcontrol_new>` object defined above, and chip is the object
2725pointer to be passed to kcontrol->private_data which can be referred
2726to in callbacks.
2727
2728:c:func:`snd_ctl_new1()` allocates a new :c:type:`struct
2729snd_kcontrol <snd_kcontrol>` instance, and
2730:c:func:`snd_ctl_add()` assigns the given control component to the
2731card.
2732
2733Change Notification
2734-------------------
2735
2736If you need to change and update a control in the interrupt routine, you
2737can call :c:func:`snd_ctl_notify()`. For example,
2738
2739::
2740
2741 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
2742
2743This function takes the card pointer, the event-mask, and the control id
2744pointer for the notification. The event-mask specifies the types of
2745notification, for example, in the above example, the change of control
2746values is notified. The id pointer is the pointer of :c:type:`struct
2747snd_ctl_elem_id <snd_ctl_elem_id>` to be notified. You can
2748find some examples in ``es1938.c`` or ``es1968.c`` for hardware volume
2749interrupts.
2750
2751Metadata
2752--------
2753
2754To provide information about the dB values of a mixer control, use on of
2755the ``DECLARE_TLV_xxx`` macros from ``<sound/tlv.h>`` to define a
2756variable containing this information, set the ``tlv.p`` field to point to
2757this variable, and include the ``SNDRV_CTL_ELEM_ACCESS_TLV_READ`` flag
2758in the ``access`` field; like this:
2759
2760::
2761
2762 static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0);
2763
2764 static struct snd_kcontrol_new my_control = {
2765 ...
2766 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
2767 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
2768 ...
2769 .tlv.p = db_scale_my_control,
2770 };
2771
2772
2773The :c:func:`DECLARE_TLV_DB_SCALE()` macro defines information
2774about a mixer control where each step in the control's value changes the
2775dB value by a constant dB amount. The first parameter is the name of the
2776variable to be defined. The second parameter is the minimum value, in
2777units of 0.01 dB. The third parameter is the step size, in units of 0.01
2778dB. Set the fourth parameter to 1 if the minimum value actually mutes
2779the control.
2780
2781The :c:func:`DECLARE_TLV_DB_LINEAR()` macro defines information
2782about a mixer control where the control's value affects the output
2783linearly. The first parameter is the name of the variable to be defined.
2784The second parameter is the minimum value, in units of 0.01 dB. The
2785third parameter is the maximum value, in units of 0.01 dB. If the
2786minimum value mutes the control, set the second parameter to
2787``TLV_DB_GAIN_MUTE``.
2788
2789API for AC97 Codec
2790==================
2791
2792General
2793-------
2794
2795The ALSA AC97 codec layer is a well-defined one, and you don't have to
2796write much code to control it. Only low-level control routines are
2797necessary. The AC97 codec API is defined in ``<sound/ac97_codec.h>``.
2798
2799Full Code Example
2800-----------------
2801
2802::
2803
2804 struct mychip {
2805 ....
2806 struct snd_ac97 *ac97;
2807 ....
2808 };
2809
2810 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
2811 unsigned short reg)
2812 {
2813 struct mychip *chip = ac97->private_data;
2814 ....
2815 /* read a register value here from the codec */
2816 return the_register_value;
2817 }
2818
2819 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
2820 unsigned short reg, unsigned short val)
2821 {
2822 struct mychip *chip = ac97->private_data;
2823 ....
2824 /* write the given register value to the codec */
2825 }
2826
2827 static int snd_mychip_ac97(struct mychip *chip)
2828 {
2829 struct snd_ac97_bus *bus;
2830 struct snd_ac97_template ac97;
2831 int err;
2832 static struct snd_ac97_bus_ops ops = {
2833 .write = snd_mychip_ac97_write,
2834 .read = snd_mychip_ac97_read,
2835 };
2836
2837 err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus);
2838 if (err < 0)
2839 return err;
2840 memset(&ac97, 0, sizeof(ac97));
2841 ac97.private_data = chip;
2842 return snd_ac97_mixer(bus, &ac97, &chip->ac97);
2843 }
2844
2845
2846AC97 Constructor
2847----------------
2848
2849To create an ac97 instance, first call :c:func:`snd_ac97_bus()`
2850with an ``ac97_bus_ops_t`` record with callback functions.
2851
2852::
2853
2854 struct snd_ac97_bus *bus;
2855 static struct snd_ac97_bus_ops ops = {
2856 .write = snd_mychip_ac97_write,
2857 .read = snd_mychip_ac97_read,
2858 };
2859
2860 snd_ac97_bus(card, 0, &ops, NULL, &pbus);
2861
2862The bus record is shared among all belonging ac97 instances.
2863
2864And then call :c:func:`snd_ac97_mixer()` with an :c:type:`struct
2865snd_ac97_template <snd_ac97_template>` record together with
2866the bus pointer created above.
2867
2868::
2869
2870 struct snd_ac97_template ac97;
2871 int err;
2872
2873 memset(&ac97, 0, sizeof(ac97));
2874 ac97.private_data = chip;
2875 snd_ac97_mixer(bus, &ac97, &chip->ac97);
2876
2877where chip->ac97 is a pointer to a newly created ``ac97_t``
2878instance. In this case, the chip pointer is set as the private data,
2879so that the read/write callback functions can refer to this chip
2880instance. This instance is not necessarily stored in the chip
2881record. If you need to change the register values from the driver, or
2882need the suspend/resume of ac97 codecs, keep this pointer to pass to
2883the corresponding functions.
2884
2885AC97 Callbacks
2886--------------
2887
2888The standard callbacks are ``read`` and ``write``. Obviously they
2889correspond to the functions for read and write accesses to the
2890hardware low-level codes.
2891
2892The ``read`` callback returns the register value specified in the
2893argument.
2894
2895::
2896
2897 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
2898 unsigned short reg)
2899 {
2900 struct mychip *chip = ac97->private_data;
2901 ....
2902 return the_register_value;
2903 }
2904
2905Here, the chip can be cast from ``ac97->private_data``.
2906
2907Meanwhile, the ``write`` callback is used to set the register
2908value
2909
2910::
2911
2912 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
2913 unsigned short reg, unsigned short val)
2914
2915
2916These callbacks are non-atomic like the control API callbacks.
2917
2918There are also other callbacks: ``reset``, ``wait`` and ``init``.
2919
2920The ``reset`` callback is used to reset the codec. If the chip
2921requires a special kind of reset, you can define this callback.
2922
2923The ``wait`` callback is used to add some waiting time in the standard
2924initialization of the codec. If the chip requires the extra waiting
2925time, define this callback.
2926
2927The ``init`` callback is used for additional initialization of the
2928codec.
2929
2930Updating Registers in The Driver
2931--------------------------------
2932
2933If you need to access to the codec from the driver, you can call the
2934following functions: :c:func:`snd_ac97_write()`,
2935:c:func:`snd_ac97_read()`, :c:func:`snd_ac97_update()` and
2936:c:func:`snd_ac97_update_bits()`.
2937
2938Both :c:func:`snd_ac97_write()` and
2939:c:func:`snd_ac97_update()` functions are used to set a value to
2940the given register (``AC97_XXX``). The difference between them is that
2941:c:func:`snd_ac97_update()` doesn't write a value if the given
2942value has been already set, while :c:func:`snd_ac97_write()`
2943always rewrites the value.
2944
2945::
2946
2947 snd_ac97_write(ac97, AC97_MASTER, 0x8080);
2948 snd_ac97_update(ac97, AC97_MASTER, 0x8080);
2949
2950:c:func:`snd_ac97_read()` is used to read the value of the given
2951register. For example,
2952
2953::
2954
2955 value = snd_ac97_read(ac97, AC97_MASTER);
2956
2957:c:func:`snd_ac97_update_bits()` is used to update some bits in
2958the given register.
2959
2960::
2961
2962 snd_ac97_update_bits(ac97, reg, mask, value);
2963
2964Also, there is a function to change the sample rate (of a given register
2965such as ``AC97_PCM_FRONT_DAC_RATE``) when VRA or DRA is supported by the
2966codec: :c:func:`snd_ac97_set_rate()`.
2967
2968::
2969
2970 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
2971
2972
2973The following registers are available to set the rate:
2974``AC97_PCM_MIC_ADC_RATE``, ``AC97_PCM_FRONT_DAC_RATE``,
2975``AC97_PCM_LR_ADC_RATE``, ``AC97_SPDIF``. When ``AC97_SPDIF`` is
2976specified, the register is not really changed but the corresponding
2977IEC958 status bits will be updated.
2978
2979Clock Adjustment
2980----------------
2981
2982In some chips, the clock of the codec isn't 48000 but using a PCI clock
2983(to save a quartz!). In this case, change the field ``bus->clock`` to
2984the corresponding value. For example, intel8x0 and es1968 drivers have
2985their own function to read from the clock.
2986
2987Proc Files
2988----------
2989
2990The ALSA AC97 interface will create a proc file such as
2991``/proc/asound/card0/codec97#0/ac97#0-0`` and ``ac97#0-0+regs``. You
2992can refer to these files to see the current status and registers of
2993the codec.
2994
2995Multiple Codecs
2996---------------
2997
2998When there are several codecs on the same card, you need to call
2999:c:func:`snd_ac97_mixer()` multiple times with ``ac97.num=1`` or
3000greater. The ``num`` field specifies the codec number.
3001
3002If you set up multiple codecs, you either need to write different
3003callbacks for each codec or check ``ac97->num`` in the callback
3004routines.
3005
3006MIDI (MPU401-UART) Interface
3007============================
3008
3009General
3010-------
3011
3012Many soundcards have built-in MIDI (MPU401-UART) interfaces. When the
3013soundcard supports the standard MPU401-UART interface, most likely you
3014can use the ALSA MPU401-UART API. The MPU401-UART API is defined in
3015``<sound/mpu401.h>``.
3016
3017Some soundchips have a similar but slightly different implementation of
3018mpu401 stuff. For example, emu10k1 has its own mpu401 routines.
3019
3020MIDI Constructor
3021----------------
3022
3023To create a rawmidi object, call :c:func:`snd_mpu401_uart_new()`.
3024
3025::
3026
3027 struct snd_rawmidi *rmidi;
3028 snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
3029 irq, &rmidi);
3030
3031
3032The first argument is the card pointer, and the second is the index of
3033this component. You can create up to 8 rawmidi devices.
3034
3035The third argument is the type of the hardware, ``MPU401_HW_XXX``. If
3036it's not a special one, you can use ``MPU401_HW_MPU401``.
3037
3038The 4th argument is the I/O port address. Many backward-compatible
3039MPU401 have an I/O port such as 0x330. Or, it might be a part of its own
3040PCI I/O region. It depends on the chip design.
3041
3042The 5th argument is a bitflag for additional information. When the I/O
3043port address above is part of the PCI I/O region, the MPU401 I/O port
3044might have been already allocated (reserved) by the driver itself. In
3045such a case, pass a bit flag ``MPU401_INFO_INTEGRATED``, and the
3046mpu401-uart layer will allocate the I/O ports by itself.
3047
3048When the controller supports only the input or output MIDI stream, pass
3049the ``MPU401_INFO_INPUT`` or ``MPU401_INFO_OUTPUT`` bitflag,
3050respectively. Then the rawmidi instance is created as a single stream.
3051
3052``MPU401_INFO_MMIO`` bitflag is used to change the access method to MMIO
3053(via readb and writeb) instead of iob and outb. In this case, you have
3054to pass the iomapped address to :c:func:`snd_mpu401_uart_new()`.
3055
3056When ``MPU401_INFO_TX_IRQ`` is set, the output stream isn't checked in
3057the default interrupt handler. The driver needs to call
3058:c:func:`snd_mpu401_uart_interrupt_tx()` by itself to start
3059processing the output stream in the irq handler.
3060
3061If the MPU-401 interface shares its interrupt with the other logical
3062devices on the card, set ``MPU401_INFO_IRQ_HOOK`` (see
3063`below <#MIDI-Interrupt-Handler>`__).
3064
3065Usually, the port address corresponds to the command port and port + 1
3066corresponds to the data port. If not, you may change the ``cport``
3067field of :c:type:`struct snd_mpu401 <snd_mpu401>` manually afterward.
3068However, :c:type:`struct snd_mpu401 <snd_mpu401>` pointer is
3069not returned explicitly by :c:func:`snd_mpu401_uart_new()`. You
3070need to cast ``rmidi->private_data`` to :c:type:`struct snd_mpu401
3071<snd_mpu401>` explicitly,
3072
3073::
3074
3075 struct snd_mpu401 *mpu;
3076 mpu = rmidi->private_data;
3077
3078and reset the ``cport`` as you like:
3079
3080::
3081
3082 mpu->cport = my_own_control_port;
3083
3084The 6th argument specifies the ISA irq number that will be allocated. If
3085no interrupt is to be allocated (because your code is already allocating
3086a shared interrupt, or because the device does not use interrupts), pass
3087-1 instead. For a MPU-401 device without an interrupt, a polling timer
3088will be used instead.
3089
3090MIDI Interrupt Handler
3091----------------------
3092
3093When the interrupt is allocated in
3094:c:func:`snd_mpu401_uart_new()`, an exclusive ISA interrupt
3095handler is automatically used, hence you don't have anything else to do
3096than creating the mpu401 stuff. Otherwise, you have to set
3097``MPU401_INFO_IRQ_HOOK``, and call
3098:c:func:`snd_mpu401_uart_interrupt()` explicitly from your own
3099interrupt handler when it has determined that a UART interrupt has
3100occurred.
3101
3102In this case, you need to pass the private_data of the returned rawmidi
3103object from :c:func:`snd_mpu401_uart_new()` as the second
3104argument of :c:func:`snd_mpu401_uart_interrupt()`.
3105
3106::
3107
3108 snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
3109
3110
3111RawMIDI Interface
3112=================
3113
3114Overview
3115--------
3116
3117The raw MIDI interface is used for hardware MIDI ports that can be
3118accessed as a byte stream. It is not used for synthesizer chips that do
3119not directly understand MIDI.
3120
3121ALSA handles file and buffer management. All you have to do is to write
3122some code to move data between the buffer and the hardware.
3123
3124The rawmidi API is defined in ``<sound/rawmidi.h>``.
3125
3126RawMIDI Constructor
3127-------------------
3128
3129To create a rawmidi device, call the :c:func:`snd_rawmidi_new()`
3130function:
3131
3132::
3133
3134 struct snd_rawmidi *rmidi;
3135 err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
3136 if (err < 0)
3137 return err;
3138 rmidi->private_data = chip;
3139 strcpy(rmidi->name, "My MIDI");
3140 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
3141 SNDRV_RAWMIDI_INFO_INPUT |
3142 SNDRV_RAWMIDI_INFO_DUPLEX;
3143
3144The first argument is the card pointer, the second argument is the ID
3145string.
3146
3147The third argument is the index of this component. You can create up to
31488 rawmidi devices.
3149
3150The fourth and fifth arguments are the number of output and input
3151substreams, respectively, of this device (a substream is the equivalent
3152of a MIDI port).
3153
3154Set the ``info_flags`` field to specify the capabilities of the
3155device. Set ``SNDRV_RAWMIDI_INFO_OUTPUT`` if there is at least one
3156output port, ``SNDRV_RAWMIDI_INFO_INPUT`` if there is at least one
3157input port, and ``SNDRV_RAWMIDI_INFO_DUPLEX`` if the device can handle
3158output and input at the same time.
3159
3160After the rawmidi device is created, you need to set the operators
3161(callbacks) for each substream. There are helper functions to set the
3162operators for all the substreams of a device:
3163
3164::
3165
3166 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
3167 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
3168
3169The operators are usually defined like this:
3170
3171::
3172
3173 static struct snd_rawmidi_ops snd_mymidi_output_ops = {
3174 .open = snd_mymidi_output_open,
3175 .close = snd_mymidi_output_close,
3176 .trigger = snd_mymidi_output_trigger,
3177 };
3178
3179These callbacks are explained in the `RawMIDI Callbacks`_ section.
3180
3181If there are more than one substream, you should give a unique name to
3182each of them:
3183
3184::
3185
3186 struct snd_rawmidi_substream *substream;
3187 list_for_each_entry(substream,
3188 &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
3189 list {
3190 sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
3191 }
3192 /* same for SNDRV_RAWMIDI_STREAM_INPUT */
3193
3194RawMIDI Callbacks
3195-----------------
3196
3197In all the callbacks, the private data that you've set for the rawmidi
3198device can be accessed as ``substream->rmidi->private_data``.
3199
3200If there is more than one port, your callbacks can determine the port
3201index from the struct snd_rawmidi_substream data passed to each
3202callback:
3203
3204::
3205
3206 struct snd_rawmidi_substream *substream;
3207 int index = substream->number;
3208
3209RawMIDI open callback
3210~~~~~~~~~~~~~~~~~~~~~
3211
3212::
3213
3214 static int snd_xxx_open(struct snd_rawmidi_substream *substream);
3215
3216
3217This is called when a substream is opened. You can initialize the
3218hardware here, but you shouldn't start transmitting/receiving data yet.
3219
3220RawMIDI close callback
3221~~~~~~~~~~~~~~~~~~~~~~
3222
3223::
3224
3225 static int snd_xxx_close(struct snd_rawmidi_substream *substream);
3226
3227Guess what.
3228
3229The ``open`` and ``close`` callbacks of a rawmidi device are
3230serialized with a mutex, and can sleep.
3231
3232Rawmidi trigger callback for output substreams
3233~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3234
3235::
3236
3237 static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
3238
3239
3240This is called with a nonzero ``up`` parameter when there is some data
3241in the substream buffer that must be transmitted.
3242
3243To read data from the buffer, call
3244:c:func:`snd_rawmidi_transmit_peek()`. It will return the number
3245of bytes that have been read; this will be less than the number of bytes
3246requested when there are no more data in the buffer. After the data have
3247been transmitted successfully, call
3248:c:func:`snd_rawmidi_transmit_ack()` to remove the data from the
3249substream buffer:
3250
3251::
3252
3253 unsigned char data;
3254 while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
3255 if (snd_mychip_try_to_transmit(data))
3256 snd_rawmidi_transmit_ack(substream, 1);
3257 else
3258 break; /* hardware FIFO full */
3259 }
3260
3261If you know beforehand that the hardware will accept data, you can use
3262the :c:func:`snd_rawmidi_transmit()` function which reads some
3263data and removes them from the buffer at once:
3264
3265::
3266
3267 while (snd_mychip_transmit_possible()) {
3268 unsigned char data;
3269 if (snd_rawmidi_transmit(substream, &data, 1) != 1)
3270 break; /* no more data */
3271 snd_mychip_transmit(data);
3272 }
3273
3274If you know beforehand how many bytes you can accept, you can use a
3275buffer size greater than one with the
3276:c:func:`snd_rawmidi_transmit\*()` functions.
3277
3278The ``trigger`` callback must not sleep. If the hardware FIFO is full
3279before the substream buffer has been emptied, you have to continue
3280transmitting data later, either in an interrupt handler, or with a
3281timer if the hardware doesn't have a MIDI transmit interrupt.
3282
3283The ``trigger`` callback is called with a zero ``up`` parameter when
3284the transmission of data should be aborted.
3285
3286RawMIDI trigger callback for input substreams
3287~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3288
3289::
3290
3291 static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
3292
3293
3294This is called with a nonzero ``up`` parameter to enable receiving data,
3295or with a zero ``up`` parameter do disable receiving data.
3296
3297The ``trigger`` callback must not sleep; the actual reading of data
3298from the device is usually done in an interrupt handler.
3299
3300When data reception is enabled, your interrupt handler should call
3301:c:func:`snd_rawmidi_receive()` for all received data:
3302
3303::
3304
3305 void snd_mychip_midi_interrupt(...)
3306 {
3307 while (mychip_midi_available()) {
3308 unsigned char data;
3309 data = mychip_midi_read();
3310 snd_rawmidi_receive(substream, &data, 1);
3311 }
3312 }
3313
3314
3315drain callback
3316~~~~~~~~~~~~~~
3317
3318::
3319
3320 static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
3321
3322
3323This is only used with output substreams. This function should wait
3324until all data read from the substream buffer have been transmitted.
3325This ensures that the device can be closed and the driver unloaded
3326without losing data.
3327
3328This callback is optional. If you do not set ``drain`` in the struct
3329snd_rawmidi_ops structure, ALSA will simply wait for 50 milliseconds
3330instead.
3331
3332Miscellaneous Devices
3333=====================
3334
3335FM OPL3
3336-------
3337
3338The FM OPL3 is still used in many chips (mainly for backward
3339compatibility). ALSA has a nice OPL3 FM control layer, too. The OPL3 API
3340is defined in ``<sound/opl3.h>``.
3341
3342FM registers can be directly accessed through the direct-FM API, defined
3343in ``<sound/asound_fm.h>``. In ALSA native mode, FM registers are
3344accessed through the Hardware-Dependent Device direct-FM extension API,
3345whereas in OSS compatible mode, FM registers can be accessed with the
3346OSS direct-FM compatible API in ``/dev/dmfmX`` device.
3347
3348To create the OPL3 component, you have two functions to call. The first
3349one is a constructor for the ``opl3_t`` instance.
3350
3351::
3352
3353 struct snd_opl3 *opl3;
3354 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
3355 integrated, &opl3);
3356
3357The first argument is the card pointer, the second one is the left port
3358address, and the third is the right port address. In most cases, the
3359right port is placed at the left port + 2.
3360
3361The fourth argument is the hardware type.
3362
3363When the left and right ports have been already allocated by the card
3364driver, pass non-zero to the fifth argument (``integrated``). Otherwise,
3365the opl3 module will allocate the specified ports by itself.
3366
3367When the accessing the hardware requires special method instead of the
3368standard I/O access, you can create opl3 instance separately with
3369:c:func:`snd_opl3_new()`.
3370
3371::
3372
3373 struct snd_opl3 *opl3;
3374 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
3375
3376Then set ``command``, ``private_data`` and ``private_free`` for the
3377private access function, the private data and the destructor. The
3378``l_port`` and ``r_port`` are not necessarily set. Only the command
3379must be set properly. You can retrieve the data from the
3380``opl3->private_data`` field.
3381
3382After creating the opl3 instance via :c:func:`snd_opl3_new()`,
3383call :c:func:`snd_opl3_init()` to initialize the chip to the
3384proper state. Note that :c:func:`snd_opl3_create()` always calls
3385it internally.
3386
3387If the opl3 instance is created successfully, then create a hwdep device
3388for this opl3.
3389
3390::
3391
3392 struct snd_hwdep *opl3hwdep;
3393 snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
3394
3395The first argument is the ``opl3_t`` instance you created, and the
3396second is the index number, usually 0.
3397
3398The third argument is the index-offset for the sequencer client assigned
3399to the OPL3 port. When there is an MPU401-UART, give 1 for here (UART
3400always takes 0).
3401
3402Hardware-Dependent Devices
3403--------------------------
3404
3405Some chips need user-space access for special controls or for loading
3406the micro code. In such a case, you can create a hwdep
3407(hardware-dependent) device. The hwdep API is defined in
3408``<sound/hwdep.h>``. You can find examples in opl3 driver or
3409``isa/sb/sb16_csp.c``.
3410
3411The creation of the ``hwdep`` instance is done via
3412:c:func:`snd_hwdep_new()`.
3413
3414::
3415
3416 struct snd_hwdep *hw;
3417 snd_hwdep_new(card, "My HWDEP", 0, &hw);
3418
3419where the third argument is the index number.
3420
3421You can then pass any pointer value to the ``private_data``. If you
3422assign a private data, you should define the destructor, too. The
3423destructor function is set in the ``private_free`` field.
3424
3425::
3426
3427 struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
3428 hw->private_data = p;
3429 hw->private_free = mydata_free;
3430
3431and the implementation of the destructor would be:
3432
3433::
3434
3435 static void mydata_free(struct snd_hwdep *hw)
3436 {
3437 struct mydata *p = hw->private_data;
3438 kfree(p);
3439 }
3440
3441The arbitrary file operations can be defined for this instance. The file
3442operators are defined in the ``ops`` table. For example, assume that
3443this chip needs an ioctl.
3444
3445::
3446
3447 hw->ops.open = mydata_open;
3448 hw->ops.ioctl = mydata_ioctl;
3449 hw->ops.release = mydata_release;
3450
3451And implement the callback functions as you like.
3452
3453IEC958 (S/PDIF)
3454---------------
3455
3456Usually the controls for IEC958 devices are implemented via the control
3457interface. There is a macro to compose a name string for IEC958
3458controls, :c:func:`SNDRV_CTL_NAME_IEC958()` defined in
3459``<include/asound.h>``.
3460
3461There are some standard controls for IEC958 status bits. These controls
3462use the type ``SNDRV_CTL_ELEM_TYPE_IEC958``, and the size of element is
3463fixed as 4 bytes array (value.iec958.status[x]). For the ``info``
3464callback, you don't specify the value field for this type (the count
3465field must be set, though).
3466
3467“IEC958 Playback Con Mask” is used to return the bit-mask for the IEC958
3468status bits of consumer mode. Similarly, “IEC958 Playback Pro Mask”
3469returns the bitmask for professional mode. They are read-only controls,
3470and are defined as MIXER controls (iface =
3471``SNDRV_CTL_ELEM_IFACE_MIXER``).
3472
3473Meanwhile, “IEC958 Playback Default” control is defined for getting and
3474setting the current default IEC958 bits. Note that this one is usually
3475defined as a PCM control (iface = ``SNDRV_CTL_ELEM_IFACE_PCM``),
3476although in some places it's defined as a MIXER control.
3477
3478In addition, you can define the control switches to enable/disable or to
3479set the raw bit mode. The implementation will depend on the chip, but
3480the control should be named as “IEC958 xxx”, preferably using the
3481:c:func:`SNDRV_CTL_NAME_IEC958()` macro.
3482
3483You can find several cases, for example, ``pci/emu10k1``,
3484``pci/ice1712``, or ``pci/cmipci.c``.
3485
3486Buffer and Memory Management
3487============================
3488
3489Buffer Types
3490------------
3491
3492ALSA provides several different buffer allocation functions depending on
3493the bus and the architecture. All these have a consistent API. The
3494allocation of physically-contiguous pages is done via
3495:c:func:`snd_malloc_xxx_pages()` function, where xxx is the bus
3496type.
3497
3498The allocation of pages with fallback is
3499:c:func:`snd_malloc_xxx_pages_fallback()`. This function tries
3500to allocate the specified pages but if the pages are not available, it
3501tries to reduce the page sizes until enough space is found.
3502
3503The release the pages, call :c:func:`snd_free_xxx_pages()`
3504function.
3505
3506Usually, ALSA drivers try to allocate and reserve a large contiguous
3507physical space at the time the module is loaded for the later use. This
3508is called “pre-allocation”. As already written, you can call the
3509following function at pcm instance construction time (in the case of PCI
3510bus).
3511
3512::
3513
3514 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
3515 snd_dma_pci_data(pci), size, max);
3516
3517where ``size`` is the byte size to be pre-allocated and the ``max`` is
3518the maximum size to be changed via the ``prealloc`` proc file. The
3519allocator will try to get an area as large as possible within the
3520given size.
3521
3522The second argument (type) and the third argument (device pointer) are
0b6a2c9c
TI
3523dependent on the bus. For normal devices, pass the device pointer
3524(typically identical as ``card->dev``) to the third argument with
7ddedebb 3525``SNDRV_DMA_TYPE_DEV`` type. For the continuous buffer unrelated to the
08422d2c
TI
3526bus can be pre-allocated with ``SNDRV_DMA_TYPE_CONTINUOUS`` type.
3527You can pass NULL to the device pointer in that case, which is the
3528default mode implying to allocate with ``GFP_KRENEL`` flag.
3529If you need a different GFP flag, you can pass it by encoding the flag
3530into the device pointer via a special macro
3531:c:func:`snd_dma_continuous_data()`.
3532For the scatter-gather buffers, use ``SNDRV_DMA_TYPE_DEV_SG`` with the
3533device pointer (see the `Non-Contiguous Buffers`_ section).
7ddedebb
TI
3534
3535Once the buffer is pre-allocated, you can use the allocator in the
3536``hw_params`` callback:
3537
3538::
3539
3540 snd_pcm_lib_malloc_pages(substream, size);
3541
3542Note that you have to pre-allocate to use this function.
3543
3544External Hardware Buffers
3545-------------------------
3546
3547Some chips have their own hardware buffers and the DMA transfer from the
3548host memory is not available. In such a case, you need to either 1)
3549copy/set the audio data directly to the external hardware buffer, or 2)
3550make an intermediate buffer and copy/set the data from it to the
3551external hardware buffer in interrupts (or in tasklets, preferably).
3552
3553The first case works fine if the external hardware buffer is large
3554enough. This method doesn't need any extra buffers and thus is more
f7a47817
TI
3555effective. You need to define the ``copy_user`` and ``copy_kernel``
3556callbacks for the data transfer, in addition to ``fill_silence``
3557callback for playback. However, there is a drawback: it cannot be
7ddedebb
TI
3558mmapped. The examples are GUS's GF1 PCM or emu8000's wavetable PCM.
3559
3560The second case allows for mmap on the buffer, although you have to
3561handle an interrupt or a tasklet to transfer the data from the
3562intermediate buffer to the hardware buffer. You can find an example in
3563the vxpocket driver.
3564
3565Another case is when the chip uses a PCI memory-map region for the
3566buffer instead of the host memory. In this case, mmap is available only
3567on certain architectures like the Intel one. In non-mmap mode, the data
3568cannot be transferred as in the normal way. Thus you need to define the
f7a47817
TI
3569``copy_user``, ``copy_kernel`` and ``fill_silence`` callbacks as well,
3570as in the cases above. The examples are found in ``rme32.c`` and
3571``rme96.c``.
7ddedebb 3572
f7a47817
TI
3573The implementation of the ``copy_user``, ``copy_kernel`` and
3574``silence`` callbacks depends upon whether the hardware supports
3575interleaved or non-interleaved samples. The ``copy_user`` callback is
3576defined like below, a bit differently depending whether the direction
3577is playback or capture:
7ddedebb
TI
3578
3579::
3580
f7a47817
TI
3581 static int playback_copy_user(struct snd_pcm_substream *substream,
3582 int channel, unsigned long pos,
3583 void __user *src, unsigned long count);
3584 static int capture_copy_user(struct snd_pcm_substream *substream,
3585 int channel, unsigned long pos,
3586 void __user *dst, unsigned long count);
7ddedebb
TI
3587
3588In the case of interleaved samples, the second argument (``channel``) is
3589not used. The third argument (``pos``) points the current position
f7a47817 3590offset in bytes.
7ddedebb
TI
3591
3592The meaning of the fourth argument is different between playback and
3593capture. For playback, it holds the source data pointer, and for
3594capture, it's the destination data pointer.
3595
f7a47817 3596The last argument is the number of bytes to be copied.
7ddedebb
TI
3597
3598What you have to do in this callback is again different between playback
3599and capture directions. In the playback case, you copy the given amount
3600of data (``count``) at the specified pointer (``src``) to the specified
3601offset (``pos``) on the hardware buffer. When coded like memcpy-like
3602way, the copy would be like:
3603
3604::
3605
f7a47817 3606 my_memcpy_from_user(my_buffer + pos, src, count);
7ddedebb
TI
3607
3608For the capture direction, you copy the given amount of data (``count``)
3609at the specified offset (``pos``) on the hardware buffer to the
3610specified pointer (``dst``).
3611
3612::
3613
f7a47817
TI
3614 my_memcpy_to_user(dst, my_buffer + pos, count);
3615
3616Here the functions are named as ``from_user`` and ``to_user`` because
3617it's the user-space buffer that is passed to these callbacks. That
3618is, the callback is supposed to copy from/to the user-space data
3619directly to/from the hardware buffer.
7ddedebb 3620
f7a47817
TI
3621Careful readers might notice that these callbacks receive the
3622arguments in bytes, not in frames like other callbacks. It's because
3623it would make coding easier like the examples above, and also it makes
3624easier to unify both the interleaved and non-interleaved cases, as
3625explained in the following.
7ddedebb
TI
3626
3627In the case of non-interleaved samples, the implementation will be a bit
f7a47817
TI
3628more complicated. The callback is called for each channel, passed by
3629the second argument, so totally it's called for N-channels times per
3630transfer.
3631
3632The meaning of other arguments are almost same as the interleaved
3633case. The callback is supposed to copy the data from/to the given
3634user-space buffer, but only for the given channel. For the detailed
3635implementations, please check ``isa/gus/gus_pcm.c`` or
3636"pci/rme9652/rme9652.c" as examples.
3637
3638The above callbacks are the copy from/to the user-space buffer. There
3639are some cases where we want copy from/to the kernel-space buffer
3640instead. In such a case, ``copy_kernel`` callback is called. It'd
3641look like:
3642
3643::
3644
3645 static int playback_copy_kernel(struct snd_pcm_substream *substream,
3646 int channel, unsigned long pos,
3647 void *src, unsigned long count);
3648 static int capture_copy_kernel(struct snd_pcm_substream *substream,
3649 int channel, unsigned long pos,
3650 void *dst, unsigned long count);
3651
3652As found easily, the only difference is that the buffer pointer is
3653without ``__user`` prefix; that is, a kernel-buffer pointer is passed
3654in the fourth argument. Correspondingly, the implementation would be
3655a version without the user-copy, such as:
7ddedebb 3656
f7a47817
TI
3657::
3658
3659 my_memcpy(my_buffer + pos, src, count);
7ddedebb 3660
f7a47817
TI
3661Usually for the playback, another callback ``fill_silence`` is
3662defined. It's implemented in a similar way as the copy callbacks
3663above:
7ddedebb
TI
3664
3665::
3666
3667 static int silence(struct snd_pcm_substream *substream, int channel,
f7a47817 3668 unsigned long pos, unsigned long count);
7ddedebb 3669
f7a47817
TI
3670The meanings of arguments are the same as in the ``copy_user`` and
3671``copy_kernel`` callbacks, although there is no buffer pointer
3672argument. In the case of interleaved samples, the channel argument has
3673no meaning, as well as on ``copy_*`` callbacks.
7ddedebb 3674
f7a47817 3675The role of ``fill_silence`` callback is to set the given amount
7ddedebb
TI
3676(``count``) of silence data at the specified offset (``pos``) on the
3677hardware buffer. Suppose that the data format is signed (that is, the
3678silent-data is 0), and the implementation using a memset-like function
3679would be like:
3680
3681::
3682
f7a47817 3683 my_memset(my_buffer + pos, 0, count);
7ddedebb
TI
3684
3685In the case of non-interleaved samples, again, the implementation
f7a47817
TI
3686becomes a bit more complicated, as it's called N-times per transfer
3687for each channel. See, for example, ``isa/gus/gus_pcm.c``.
7ddedebb
TI
3688
3689Non-Contiguous Buffers
3690----------------------
3691
3692If your hardware supports the page table as in emu10k1 or the buffer
3693descriptors as in via82xx, you can use the scatter-gather (SG) DMA. ALSA
3694provides an interface for handling SG-buffers. The API is provided in
3695``<sound/pcm.h>``.
3696
3697For creating the SG-buffer handler, call
3698:c:func:`snd_pcm_lib_preallocate_pages()` or
3699:c:func:`snd_pcm_lib_preallocate_pages_for_all()` with
3700``SNDRV_DMA_TYPE_DEV_SG`` in the PCM constructor like other PCI
3701pre-allocator. You need to pass ``snd_dma_pci_data(pci)``, where pci is
3702the :c:type:`struct pci_dev <pci_dev>` pointer of the chip as
3703well. The ``struct snd_sg_buf`` instance is created as
3704``substream->dma_private``. You can cast the pointer like:
3705
3706::
3707
3708 struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
3709
3710Then call :c:func:`snd_pcm_lib_malloc_pages()` in the ``hw_params``
3711callback as well as in the case of normal PCI buffer. The SG-buffer
3712handler will allocate the non-contiguous kernel pages of the given size
3713and map them onto the virtually contiguous memory. The virtual pointer
3714is addressed in runtime->dma_area. The physical address
3715(``runtime->dma_addr``) is set to zero, because the buffer is
3716physically non-contiguous. The physical address table is set up in
3717``sgbuf->table``. You can get the physical address at a certain offset
3718via :c:func:`snd_pcm_sgbuf_get_addr()`.
3719
3720When a SG-handler is used, you need to set
3721:c:func:`snd_pcm_sgbuf_ops_page()` as the ``page`` callback. (See
3722`page callback`_ section.)
3723
3724To release the data, call :c:func:`snd_pcm_lib_free_pages()` in
3725the ``hw_free`` callback as usual.
3726
3727Vmalloc'ed Buffers
3728------------------
3729
3730It's possible to use a buffer allocated via :c:func:`vmalloc()`, for
3731example, for an intermediate buffer. Since the allocated pages are not
3732contiguous, you need to set the ``page`` callback to obtain the physical
3733address at every offset.
3734
f90afe79
TI
3735The easiest way to achieve it would be to use
3736:c:func:`snd_pcm_lib_alloc_vmalloc_buffer()` for allocating the buffer
3737via :c:func:`vmalloc()`, and set :c:func:`snd_pcm_sgbuf_ops_page()` to
3738the ``page`` callback. At release, you need to call
3739:c:func:`snd_pcm_lib_free_vmalloc_buffer()`.
3740
3741If you want to implementation the ``page`` manually, it would be like
3742this:
7ddedebb
TI
3743
3744::
3745
3746 #include <linux/vmalloc.h>
3747
3748 /* get the physical page pointer on the given offset */
3749 static struct page *mychip_page(struct snd_pcm_substream *substream,
3750 unsigned long offset)
3751 {
3752 void *pageptr = substream->runtime->dma_area + offset;
3753 return vmalloc_to_page(pageptr);
3754 }
3755
3756Proc Interface
3757==============
3758
3759ALSA provides an easy interface for procfs. The proc files are very
3760useful for debugging. I recommend you set up proc files if you write a
3761driver and want to get a running status or register dumps. The API is
3762found in ``<sound/info.h>``.
3763
3764To create a proc file, call :c:func:`snd_card_proc_new()`.
3765
3766::
3767
3768 struct snd_info_entry *entry;
3769 int err = snd_card_proc_new(card, "my-file", &entry);
3770
3771where the second argument specifies the name of the proc file to be
3772created. The above example will create a file ``my-file`` under the
3773card directory, e.g. ``/proc/asound/card0/my-file``.
3774
3775Like other components, the proc entry created via
3776:c:func:`snd_card_proc_new()` will be registered and released
3777automatically in the card registration and release functions.
3778
3779When the creation is successful, the function stores a new instance in
3780the pointer given in the third argument. It is initialized as a text
3781proc file for read only. To use this proc file as a read-only text file
3782as it is, set the read callback with a private data via
3783:c:func:`snd_info_set_text_ops()`.
3784
3785::
3786
3787 snd_info_set_text_ops(entry, chip, my_proc_read);
3788
3789where the second argument (``chip``) is the private data to be used in
3790the callbacks. The third parameter specifies the read buffer size and
3791the fourth (``my_proc_read``) is the callback function, which is
3792defined like
3793
3794::
3795
3796 static void my_proc_read(struct snd_info_entry *entry,
3797 struct snd_info_buffer *buffer);
3798
3799In the read callback, use :c:func:`snd_iprintf()` for output
3800strings, which works just like normal :c:func:`printf()`. For
3801example,
3802
3803::
3804
3805 static void my_proc_read(struct snd_info_entry *entry,
3806 struct snd_info_buffer *buffer)
3807 {
3808 struct my_chip *chip = entry->private_data;
3809
3810 snd_iprintf(buffer, "This is my chip!\n");
3811 snd_iprintf(buffer, "Port = %ld\n", chip->port);
3812 }
3813
3814The file permissions can be changed afterwards. As default, it's set as
3815read only for all users. If you want to add write permission for the
3816user (root as default), do as follows:
3817
3818::
3819
3820 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
3821
3822and set the write buffer size and the callback
3823
3824::
3825
3826 entry->c.text.write = my_proc_write;
3827
3828For the write callback, you can use :c:func:`snd_info_get_line()`
3829to get a text line, and :c:func:`snd_info_get_str()` to retrieve
3830a string from the line. Some examples are found in
3831``core/oss/mixer_oss.c``, core/oss/and ``pcm_oss.c``.
3832
3833For a raw-data proc-file, set the attributes as follows:
3834
3835::
3836
3837 static struct snd_info_entry_ops my_file_io_ops = {
3838 .read = my_file_io_read,
3839 };
3840
3841 entry->content = SNDRV_INFO_CONTENT_DATA;
3842 entry->private_data = chip;
3843 entry->c.ops = &my_file_io_ops;
3844 entry->size = 4096;
3845 entry->mode = S_IFREG | S_IRUGO;
3846
3847For the raw data, ``size`` field must be set properly. This specifies
3848the maximum size of the proc file access.
3849
3850The read/write callbacks of raw mode are more direct than the text mode.
3851You need to use a low-level I/O functions such as
3852:c:func:`copy_from/to_user()` to transfer the data.
3853
3854::
3855
3856 static ssize_t my_file_io_read(struct snd_info_entry *entry,
3857 void *file_private_data,
3858 struct file *file,
3859 char *buf,
3860 size_t count,
3861 loff_t pos)
3862 {
3863 if (copy_to_user(buf, local_data + pos, count))
3864 return -EFAULT;
3865 return count;
3866 }
3867
3868If the size of the info entry has been set up properly, ``count`` and
3869``pos`` are guaranteed to fit within 0 and the given size. You don't
3870have to check the range in the callbacks unless any other condition is
3871required.
3872
3873Power Management
3874================
3875
3876If the chip is supposed to work with suspend/resume functions, you need
3877to add power-management code to the driver. The additional code for
f90afe79
TI
3878power-management should be ifdef-ed with ``CONFIG_PM``, or annotated
3879with __maybe_unused attribute; otherwise the compiler will complain
3880you.
7ddedebb
TI
3881
3882If the driver *fully* supports suspend/resume that is, the device can be
3883properly resumed to its state when suspend was called, you can set the
3884``SNDRV_PCM_INFO_RESUME`` flag in the pcm info field. Usually, this is
3885possible when the registers of the chip can be safely saved and restored
3886to RAM. If this is set, the trigger callback is called with
3887``SNDRV_PCM_TRIGGER_RESUME`` after the resume callback completes.
3888
3889Even if the driver doesn't support PM fully but partial suspend/resume
3890is still possible, it's still worthy to implement suspend/resume
3891callbacks. In such a case, applications would reset the status by
3892calling :c:func:`snd_pcm_prepare()` and restart the stream
3893appropriately. Hence, you can define suspend/resume callbacks below but
3894don't set ``SNDRV_PCM_INFO_RESUME`` info flag to the PCM.
3895
3896Note that the trigger with SUSPEND can always be called when
3897:c:func:`snd_pcm_suspend_all()` is called, regardless of the
3898``SNDRV_PCM_INFO_RESUME`` flag. The ``RESUME`` flag affects only the
3899behavior of :c:func:`snd_pcm_resume()`. (Thus, in theory,
3900``SNDRV_PCM_TRIGGER_RESUME`` isn't needed to be handled in the trigger
3901callback when no ``SNDRV_PCM_INFO_RESUME`` flag is set. But, it's better
3902to keep it for compatibility reasons.)
3903
3904In the earlier version of ALSA drivers, a common power-management layer
3905was provided, but it has been removed. The driver needs to define the
3906suspend/resume hooks according to the bus the device is connected to. In
3907the case of PCI drivers, the callbacks look like below:
3908
3909::
3910
f90afe79 3911 static int __maybe_unused snd_my_suspend(struct device *dev)
7ddedebb
TI
3912 {
3913 .... /* do things for suspend */
3914 return 0;
3915 }
f90afe79 3916 static int __maybe_unused snd_my_resume(struct device *dev)
7ddedebb
TI
3917 {
3918 .... /* do things for suspend */
3919 return 0;
3920 }
7ddedebb
TI
3921
3922The scheme of the real suspend job is as follows.
3923
39241. Retrieve the card and the chip data.
3925
39262. Call :c:func:`snd_power_change_state()` with
3927 ``SNDRV_CTL_POWER_D3hot`` to change the power status.
3928
910e7e19 39293. If AC97 codecs are used, call :c:func:`snd_ac97_suspend()` for
7ddedebb
TI
3930 each codec.
3931
910e7e19 39324. Save the register values if necessary.
7ddedebb 3933
910e7e19 39345. Stop the hardware if necessary.
7ddedebb 3935
7ddedebb
TI
3936A typical code would be like:
3937
3938::
3939
f90afe79 3940 static int __maybe_unused mychip_suspend(struct device *dev)
7ddedebb
TI
3941 {
3942 /* (1) */
f90afe79 3943 struct snd_card *card = dev_get_drvdata(dev);
7ddedebb
TI
3944 struct mychip *chip = card->private_data;
3945 /* (2) */
3946 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3947 /* (3) */
7ddedebb 3948 snd_ac97_suspend(chip->ac97);
910e7e19 3949 /* (4) */
7ddedebb 3950 snd_mychip_save_registers(chip);
910e7e19 3951 /* (5) */
7ddedebb 3952 snd_mychip_stop_hardware(chip);
7ddedebb
TI
3953 return 0;
3954 }
3955
3956
3957The scheme of the real resume job is as follows.
3958
39591. Retrieve the card and the chip data.
3960
f90afe79 39612. Re-initialize the chip.
7ddedebb 3962
f90afe79 39633. Restore the saved registers if necessary.
7ddedebb 3964
f90afe79 39654. Resume the mixer, e.g. calling :c:func:`snd_ac97_resume()`.
7ddedebb 3966
f90afe79 39675. Restart the hardware (if any).
7ddedebb 3968
f90afe79 39696. Call :c:func:`snd_power_change_state()` with
7ddedebb
TI
3970 ``SNDRV_CTL_POWER_D0`` to notify the processes.
3971
3972A typical code would be like:
3973
3974::
3975
f90afe79 3976 static int __maybe_unused mychip_resume(struct pci_dev *pci)
7ddedebb
TI
3977 {
3978 /* (1) */
f90afe79 3979 struct snd_card *card = dev_get_drvdata(dev);
7ddedebb
TI
3980 struct mychip *chip = card->private_data;
3981 /* (2) */
7ddedebb 3982 snd_mychip_reinit_chip(chip);
f90afe79 3983 /* (3) */
7ddedebb 3984 snd_mychip_restore_registers(chip);
f90afe79 3985 /* (4) */
7ddedebb 3986 snd_ac97_resume(chip->ac97);
f90afe79 3987 /* (5) */
7ddedebb 3988 snd_mychip_restart_chip(chip);
f90afe79 3989 /* (6) */
7ddedebb
TI
3990 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3991 return 0;
3992 }
3993
910e7e19
TI
3994Note that, at the time this callback gets called, the PCM stream has
3995been already suspended via its own PM ops calling
3996:c:func:`snd_pcm_suspend_all()` internally.
7ddedebb
TI
3997
3998OK, we have all callbacks now. Let's set them up. In the initialization
3999of the card, make sure that you can get the chip data from the card
4000instance, typically via ``private_data`` field, in case you created the
4001chip data individually.
4002
4003::
4004
4005 static int snd_mychip_probe(struct pci_dev *pci,
4006 const struct pci_device_id *pci_id)
4007 {
4008 ....
4009 struct snd_card *card;
4010 struct mychip *chip;
4011 int err;
4012 ....
4013 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
4014 0, &card);
4015 ....
4016 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
4017 ....
4018 card->private_data = chip;
4019 ....
4020 }
4021
4022When you created the chip data with :c:func:`snd_card_new()`, it's
4023anyway accessible via ``private_data`` field.
4024
4025::
4026
4027 static int snd_mychip_probe(struct pci_dev *pci,
4028 const struct pci_device_id *pci_id)
4029 {
4030 ....
4031 struct snd_card *card;
4032 struct mychip *chip;
4033 int err;
4034 ....
4035 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
4036 sizeof(struct mychip), &card);
4037 ....
4038 chip = card->private_data;
4039 ....
4040 }
4041
4042If you need a space to save the registers, allocate the buffer for it
4043here, too, since it would be fatal if you cannot allocate a memory in
4044the suspend phase. The allocated buffer should be released in the
4045corresponding destructor.
4046
4047And next, set suspend/resume callbacks to the pci_driver.
4048
4049::
4050
f90afe79
TI
4051 static SIMPLE_DEV_PM_OPS(snd_my_pm_ops, mychip_suspend, mychip_resume);
4052
7ddedebb
TI
4053 static struct pci_driver driver = {
4054 .name = KBUILD_MODNAME,
4055 .id_table = snd_my_ids,
4056 .probe = snd_my_probe,
4057 .remove = snd_my_remove,
f90afe79 4058 .driver.pm = &snd_my_pm_ops,
7ddedebb
TI
4059 };
4060
4061Module Parameters
4062=================
4063
4064There are standard module options for ALSA. At least, each module should
4065have the ``index``, ``id`` and ``enable`` options.
4066
4067If the module supports multiple cards (usually up to 8 = ``SNDRV_CARDS``
4068cards), they should be arrays. The default initial values are defined
4069already as constants for easier programming:
4070
4071::
4072
4073 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
4074 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
4075 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
4076
4077If the module supports only a single card, they could be single
4078variables, instead. ``enable`` option is not always necessary in this
4079case, but it would be better to have a dummy option for compatibility.
4080
4081The module parameters must be declared with the standard
f90afe79 4082``module_param()``, ``module_param_array()`` and
7ddedebb
TI
4083:c:func:`MODULE_PARM_DESC()` macros.
4084
4085The typical coding would be like below:
4086
4087::
4088
4089 #define CARD_NAME "My Chip"
4090
4091 module_param_array(index, int, NULL, 0444);
4092 MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
4093 module_param_array(id, charp, NULL, 0444);
4094 MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
4095 module_param_array(enable, bool, NULL, 0444);
4096 MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
4097
f90afe79
TI
4098Also, don't forget to define the module description and the license.
4099Especially, the recent modprobe requires to define the
7ddedebb
TI
4100module license as GPL, etc., otherwise the system is shown as “tainted”.
4101
4102::
4103
f90afe79 4104 MODULE_DESCRIPTION("Sound driver for My Chip");
7ddedebb 4105 MODULE_LICENSE("GPL");
7ddedebb
TI
4106
4107
4108How To Put Your Driver Into ALSA Tree
4109=====================================
4110
4111General
4112-------
4113
4114So far, you've learned how to write the driver codes. And you might have
4115a question now: how to put my own driver into the ALSA driver tree? Here
4116(finally :) the standard procedure is described briefly.
4117
4118Suppose that you create a new PCI driver for the card “xyz”. The card
4119module name would be snd-xyz. The new driver is usually put into the
f90afe79
TI
4120alsa-driver tree, ``sound/pci`` directory in the case of PCI
4121cards.
7ddedebb
TI
4122
4123In the following sections, the driver code is supposed to be put into
f90afe79 4124Linux kernel tree. The two cases are covered: a driver consisting of a
7ddedebb
TI
4125single source file and one consisting of several source files.
4126
4127Driver with A Single Source File
4128--------------------------------
4129
f90afe79 41301. Modify sound/pci/Makefile
7ddedebb
TI
4131
4132 Suppose you have a file xyz.c. Add the following two lines
4133
4134::
4135
4136 snd-xyz-objs := xyz.o
4137 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
4138
41392. Create the Kconfig entry
4140
4141 Add the new entry of Kconfig for your xyz driver. config SND_XYZ
4142 tristate "Foobar XYZ" depends on SND select SND_PCM help Say Y here
4143 to include support for Foobar XYZ soundcard. To compile this driver
4144 as a module, choose M here: the module will be called snd-xyz. the
4145 line, select SND_PCM, specifies that the driver xyz supports PCM. In
4146 addition to SND_PCM, the following components are supported for
4147 select command: SND_RAWMIDI, SND_TIMER, SND_HWDEP,
4148 SND_MPU401_UART, SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB,
4149 SND_AC97_CODEC. Add the select command for each supported
4150 component.
4151
4152 Note that some selections imply the lowlevel selections. For example,
4153 PCM includes TIMER, MPU401_UART includes RAWMIDI, AC97_CODEC
4154 includes PCM, and OPL3_LIB includes HWDEP. You don't need to give
4155 the lowlevel selections again.
4156
4157 For the details of Kconfig script, refer to the kbuild documentation.
4158
7ddedebb
TI
4159Drivers with Several Source Files
4160---------------------------------
4161
4162Suppose that the driver snd-xyz have several source files. They are
f90afe79 4163located in the new subdirectory, sound/pci/xyz.
7ddedebb 4164
f90afe79
TI
41651. Add a new directory (``sound/pci/xyz``) in ``sound/pci/Makefile``
4166 as below
7ddedebb
TI
4167
4168::
4169
f90afe79 4170 obj-$(CONFIG_SND) += sound/pci/xyz/
7ddedebb
TI
4171
4172
f90afe79 41732. Under the directory ``sound/pci/xyz``, create a Makefile
7ddedebb
TI
4174
4175::
4176
7ddedebb 4177 snd-xyz-objs := xyz.o abc.o def.o
7ddedebb
TI
4178 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
4179
7ddedebb
TI
41803. Create the Kconfig entry
4181
4182 This procedure is as same as in the last section.
4183
7ddedebb
TI
4184
4185Useful Functions
4186================
4187
4188:c:func:`snd_printk()` and friends
f90afe79
TI
4189----------------------------------
4190
4191.. note:: This subsection describes a few helper functions for
4192 decorating a bit more on the standard :c:func:`printk()` & co.
4193 However, in general, the use of such helpers is no longer recommended.
4194 If possible, try to stick with the standard functions like
4195 :c:func:`dev_err()` or :c:func:`pr_err()`.
7ddedebb
TI
4196
4197ALSA provides a verbose version of the :c:func:`printk()` function.
4198If a kernel config ``CONFIG_SND_VERBOSE_PRINTK`` is set, this function
4199prints the given message together with the file name and the line of the
4200caller. The ``KERN_XXX`` prefix is processed as well as the original
4201:c:func:`printk()` does, so it's recommended to add this prefix,
4202e.g. snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\\n");
4203
4204There are also :c:func:`printk()`'s for debugging.
4205:c:func:`snd_printd()` can be used for general debugging purposes.
4206If ``CONFIG_SND_DEBUG`` is set, this function is compiled, and works
4207just like :c:func:`snd_printk()`. If the ALSA is compiled without
4208the debugging flag, it's ignored.
4209
4210:c:func:`snd_printdd()` is compiled in only when
f90afe79 4211``CONFIG_SND_DEBUG_VERBOSE`` is set.
7ddedebb
TI
4212
4213:c:func:`snd_BUG()`
f90afe79 4214-------------------
7ddedebb
TI
4215
4216It shows the ``BUG?`` message and stack trace as well as
4217:c:func:`snd_BUG_ON()` at the point. It's useful to show that a
4218fatal error happens there.
4219
4220When no debug flag is set, this macro is ignored.
4221
4222:c:func:`snd_BUG_ON()`
f90afe79 4223----------------------
7ddedebb
TI
4224
4225:c:func:`snd_BUG_ON()` macro is similar with
4226:c:func:`WARN_ON()` macro. For example, snd_BUG_ON(!pointer); or
4227it can be used as the condition, if (snd_BUG_ON(non_zero_is_bug))
4228return -EINVAL;
4229
4230The macro takes an conditional expression to evaluate. When
4231``CONFIG_SND_DEBUG``, is set, if the expression is non-zero, it shows
4232the warning message such as ``BUG? (xxx)`` normally followed by stack
4233trace. In both cases it returns the evaluated value.
4234
4235Acknowledgments
4236===============
4237
4238I would like to thank Phil Kerr for his help for improvement and
4239corrections of this document.
4240
4241Kevin Conder reformatted the original plain-text to the DocBook format.
4242
4243Giuliano Pochini corrected typos and contributed the example codes in
4244the hardware constraints section.